Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
C=1+3+32+33+34+35+...+311
C=(1+3+32)+(33+34+35)+...+(39+310+311)
C=13+(33.1+33.3+33.32)+...+(39.1+39.3+39.32)
C=13+33.(1+3+32)+...+39.(1+3+32)
C=13.1+33.13+...+39.13
C=13.(1+33+35+37+39)\(⋮\)3
\(\Rightarrow\)C\(⋮\)3
Câu b ghép 4 số lại với nhau rồi làm như trên
a) Ta có : \(C=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^9+3^{10}+3^{11}\right)\)
\(=\left(1+3+3^2\right)+3^3.\left(1+3+3^2\right)+...+3^9.\left(1+3+3^2\right)\)
\(=13+3^3.13+...+3^9.13\)
\(=13.\left(1+3^3+...+3^9\right)⋮13\)
\(\Rightarrow C⋮13\left(\text{đpcm}\right)\)
b) Ta có : \(C=\left(1+3+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)+\left(3^8+3^9+3^{10}+3^{11}\right)\)
\(=\left(1+3+3^2+3^3\right)+3^4.\left(1+3+3^2+3^4\right)+3^8.\left(1+3+3^2+3^3\right)\)
\(=40+3^4.40+3^8.40\)
\(=40.\left(1+3^4+3^8\right)⋮40\)
\(\Rightarrow C⋮40\left(\text{đpcm}\right)\)
a,26.3+17.43=26.3+17.26=26.(3+17)=26.20 chia hết cho 10
b,Ta có A=(3+32+33)+...+(3100+3101+3102)=40+40.33+...+40.3100 =40.(1+33+...+3100) chia hết cho 4
A=(3+32)+...+(3101+3102)=13.(32+...+3100) chia hết cho 13
c,Ta có C có 10 số hạng. mà mỗi số hang của C đếu có tận cùng là 1 nên C có tận cùng là 0 chia hheets cho 5
2.Với n=2k=>n.(n+3) chia hết cho 2
với n=2k+1=>n+3 chia hết cho 2=>
n.(n+3) chia hết cho 2
=>với n thuộc N thì n.(n+3) chia hết cho 2
1/a)Ta có: A = 2 + 22 + 23 + ... + 260
= (2 + 22) + (23+24) + ... + (259 + 560)
= (2.1 + 2.2) + (23.1 + 23.2) + ... + (259.1 + 259.2)
= 2.(1 + 2) + 23.(1 + 2) + ... + 259.(1 + 2)
= 2.3 + 23.3 + ... + 259.3
= 3.(2 + 23 + ... + 259) \(⋮\) 3
Vậy A \(⋮\) 3.
b) Tương tự: gộp 3.
c) gộp 4
Bài 1:
a, A = 2 + 22 + 23 + ... + 260
= ( 2 + 22 ) + ( 23 + 24 ) + .... + ( 259 + 260 )
= 2 . ( 1 + 2 ) + 23 . ( 1 + 2 ) + ... + 259 . ( 1 + 2 )
= 2 . 3 + 23 . 3 + ... + 259 . 3
= 3 . ( 2 + 23 + ... + 259 )
Vậy A chia hết cho 3
b,A = ( 2 + 22 + 23 ) + ( 24 + 25 + 26 ) + ... + ( 258 + 259 + 260 )
= 2 . ( 1 + 2 + 22 ) + 24 . ( 1 + 2 + 22 ) + ... + 258 . ( 1 + 2 + 22)
= 2. 7 + 24 . 7 + ... + 258 . 7
= 7 . ( 2 + 24 + ... + 258 )
Vậy A chia hết cho 7
c, Ta có:
A= ( 2 + 22 + 23 + 24 ) + ............ + ( 257 + 258 + 259 + 260 )
= 2 . ( 1 + 2 + 22 + 23 ) + ............ + 257 . ( 1 + 2 + 22 + 23 )
= 2. 15 + ............ + 257 . 15
= 15 . ( 2 + ...............+ 257 )
Vậy A chia hết cho 15
\(C=1+3+3^2+.....+3^{11}.\)
\(\Rightarrow C=\left(1+3+3^2\right)+.....+\left(3^9+3^{10}+3^{11}\right)\)
\(\Rightarrow C=13+3^3.13+....+3^9.13\)
\(\Rightarrow C=13.\left(1+3^3+....+3^9\right)\)
Vì \(13⋮13\)
Do đó : \(C⋮13\)
\(C=1+3+3^2+.....+3^{11}\)
\(\Rightarrow C=\left(1+3+3^2+3^3\right)+....+\left(3^8+3^9+3^{10}+3^{11}\right)\)
\(\Rightarrow C=40+40.3^4+3^8.40\)
\(\Rightarrow C=40.\left(1+3^4+3^8\right)\)
Vì \(40⋮40\)
Do đó \(C⋮40\)(đpcm)
a,C1+3+32)+.....+39,(1+3+32)
C=13+.....+39.13
C=13(1+.....+39) chia hết cho 13
Vậy C chia hết cho 13
b,C=(1+3+32+33)+.....+38(1+3+32+33)
C=40+.....+38+40
C=40(1+.....+38.40
C=40(1+.....+38 chia hết cho 40
Vậy C chia hết cho 40
1) B = 31 + 32 +...+ 32010
= (3+32) + (33 + 34) + ...+ (32009 + 32010 )
= 3(1+3) + 33(1+3) + ...+ 32009(1+3)
= 3.4 + 33.4 + ...+ 32009.4
= 4(3+ 33 +...+ 32009) \(⋮\) 4 (1)
B = (3+ 32 + 33) +(34 + 35 + 36 ) +...+ (32008 + 32009 + 32010)
= 3(1+3+32) + 34(1+3+32) + ...+ 32008(1+3+32)
= 3.13 + 34.13 + ...+ 32008.13 \(⋮\) 13 (2)
Từ (1) và (2) => đpcm
b) Làm tương tự như câu a)
3)
a) Số chữ số chia hết cho 55 từ 11 đến 10001000 là
\(\dfrac{1000-5}{5}\)+1 =200 (số)
b)Ta thấy 1015 \(\equiv\) 1 (mod 9 ) ; 8 \(\equiv\) 8(mod 9 )
=> 1015 + 8 \(\equiv\) 0 (mod 9)
=> 1015 + 8 \(⋮\) 9
Tương tự 1015 + 8 chia hết cho 2 ( 1015 và 8 chẵn)
c) 102010 + 8 = 1000....0 (2010 chữ số 0 ) + 8 = 1000...08 (2009 chữ số 0) có tổng các chữ số : 1 + 0+ 0+...+0+8 = 9 chia hết cho 9
=> 102010 + 8 chia hết cho 9
d) Ta có : ab + ba
= 10a + b + 10b + a
= 11a + 11b
= 11(a+b) \(⋮\) 11
e) Ta có : aaa = 100a + 10a + a = (100+10+1)a = 111a = 37.3.a \(⋮\) 37
Chúc bn học tốt !
a) Bạn ghép 3 số
b) Bạn ghép 2 số