Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Xét x^8 - 2014x^7 tại x= 2013
x^8 - 2014x^7 = 2013^8-2014. 2013^7 = 2013^7. ( 2013-2014) = - 2013^7
- Tính tiếp : -2013^7 + 2014. 2013^6 = 2013^6 ( -2013+2014 ) = 2013^6
Cứ như vậy đến -2014. 2013 = - 2013
Cuối cùng KQ f(2013) = -2013+2020=7
2013^8 - 2014. 2013^7 = 2013^7 ( 2013-2014 ) = - 2013^7
- 2013^7 + 2014. 2013^6 = 2013^6 ( -2013+2014) = 2013^6
..............................................................................................
..............................................................................................
-2013 + 2020 = 7
Vậy f(2013)= 7
x = 2013 => x + 1 = 2014
Ta có:\(B=x^{2013}-2014x^{2012}+2014x^{2011}-2014x^{2010}+...+2014x-1\)
\(=x^{2013}-\left(x+1\right)x^{2012}+\left(x+1\right)x^{2011}-\left(x+1\right)x^{2010}+...+\left(x+1\right)x-1\)
\(=x^{2013}-x^{2013}-x^{2012}+x^{2012}+x^{2011}-x^{2011}-x^{2010}+...+x^2+x-1\)
\(=x-1\)
\(=2013-1\)
\(=2012\)
\(X=2013\Rightarrow2014=X+1\Rightarrow B=X^{2013}-\left(X+1\right)\times X^{2012}+...+\left(X+1\right)\times X-1\)\(X-1\)
\(\Rightarrow B=X^{2013}-X^{2013}-X^{2012}+...+X^2+X-1\)
\(\Rightarrow B=X-1\)\(=2013-1=2012\)
5 Câu :V chia ra phần 1 2 câu phần 2 3 câu nhé ;v
Câu 1 : Theo đề ta có : \(\left(x+1\right)^{2014}+\left(y-1\right)^{2016}=0\)
vì \(\left\{{}\begin{matrix}\left(x+1\right)^{2014}\ge0\forall x\\\left(y-1\right)^{2016}\ge0\forall y\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left(x+1\right)=0\\\left(y-1\right)=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)
Vậy GTBT \(3x^7-5y^6+1=3\cdot\left(-1\right)^7-5\cdot1^6+1=-7\)
Câu 2 : Để \(T\left(x\right)=x^{2014}-x=0\)
\(\Leftrightarrow x^{2014}=x\)
mà \(x^{2014}\ge0\forall x\rightarrow x\ge0\) (vì \(x^{2014}=x\))
Vậy x nhận hai giá trị là x = \(\left(0;1\right)\) thì GTBT T(x) bằng 0.
Ta thấy 2014=2013+1=x+1
B=x2013-2014x2012+2014x2011-2014x2011-2014x2010+.....-2014x2+2014x
B=x2013-(2013+1).x2012+(2013+1).x2011-(2013+1).x2011-(2013+1).x2010+....-(2013+1).x2+(2013+1).x
B=x2013-(x+1).x2012+(x+1).x2011-(x+1).x2011-(x+1).x2010+......-(x+1).x2+(x+1).x
B=x2013-x2013-x2012+x2012+x2011-x2012-x2011-x2011-x2010+....-x3-x2+x2+x
B=.....................(tự triệt tiêu tiếp)
thay x=2015 vao da thuc ta dc:
2015^10 - 2014 x 2015^9 - 2014 x 2015^8 -....- 2014 x 2015-2014
=2015^9 x(2015-2014) -2014 x 2015^8 -...- 2014 x2015 - 2014
=2015^9 - 2014 x 2015^8 -...- 2014 x 2015 - 2014
=2015^8-....- 2014 x2015 - 2014
=2015 - 2014 =1
(tu dong thu 2, x co nghia la dau nhan nhe ban)