\(A=\frac{3\sqrt{x}-2}{\sqrt{x}+1}-\frac{14\sqrt{x}+4}{x+4\sqrt{x+3}}-\frac{2\sq...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
6 tháng 11 2019

\(A=\frac{\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)}-\frac{14\sqrt{x}+4}{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)}-\frac{\left(2\sqrt{x}+3\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{3x+7\sqrt{x}-6}{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)}-\frac{14\sqrt{x}+4}{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)}-\frac{2x+5\sqrt{x}+3}{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{x-12\sqrt{x}-13}{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)}=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-13\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)}=\frac{\sqrt{x}-13}{\sqrt{x}+3}\)

\(A=\frac{\sqrt{x}+3-16}{\sqrt{x}+3}=1-\frac{16}{\sqrt{x}+3}\ge1-\frac{16}{3}=-\frac{13}{3}\)

\(A_{min}=-\frac{13}{3}\) khi \(x=0\)

16 tháng 8 2016

a) Rút gọn : Q =\(\left(\frac{\sqrt{x}-3}{\sqrt{x}+3}+\frac{\sqrt{x}+3}{\sqrt{x}-3}-\frac{14}{9-x}\right).\frac{\sqrt{x}-3}{2}\left(x\ge0,x\ne9\right)\)

                  Q =\(\left(\frac{\sqrt{x}-3}{\sqrt{x}+3}+\frac{\sqrt{x}+3}{\sqrt{x}-3}+\frac{14}{x-9}\right).\frac{\sqrt{x}-3}{2}\)

                  Q =\(\left(\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\frac{14}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right).\frac{\sqrt{x}-3}{2}\)

                   Q = \(\frac{x-6\sqrt{x}+9+x+6\sqrt{x}+9+14}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}-3}{2}\)

                   Q = \(\frac{2x+32}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}-3}{2}\)

                   Q = \(\frac{2\left(x+16\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}-3}{2}\)

                   Q = \(\frac{x+16}{\sqrt{x}+3}\)

                   thay  \(x=7-4\sqrt{3}\) vào Q ta được

                       Q =\(\frac{7-4\sqrt{3}+16}{\sqrt{7-4\sqrt{3}}+3}\) =\(\frac{23-4\sqrt{3}}{\sqrt{\left(2-\sqrt{3}\right)^2+3}}\)

                                                                  =\(\frac{23-4\sqrt{3}}{2-\sqrt{3}+3}\)

                                                                  =\(\frac{23-4\sqrt{3}}{5-\sqrt{3}}\)

28 tháng 7 2016

a, Q = \(\left(\frac{\sqrt{x}-3}{\sqrt{x}+3}+\frac{\sqrt{x}+3}{\sqrt{x}-3}-\frac{14}{9-x}\right)\times\frac{\sqrt{x}-3}{2}\)

        = \(\left[\frac{\left(\sqrt{x}-3\right)^2+\left(\sqrt{x}+3\right)^2+14}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right]\times\frac{\sqrt{x}-3}{2}\)

        = \(\left[\frac{x-6\sqrt{x}+9+x+6\sqrt{x}+9+14}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right]\times\frac{\sqrt{x}-3}{2}\)

        = \(\frac{2x+32}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\times\frac{\sqrt{x}-3}{2}\)

        = \(\frac{2\left(x+16\right)\left(\sqrt{x}-3\right)}{2\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

        = \(\frac{x+16}{\sqrt{x}+3}\)

Thay  \(x=7-4\sqrt{3}\)  vào Q ta được:

    Q= \(\frac{7-4\sqrt{3}+16}{\sqrt{7-4\sqrt{3}}+3}\)  = \(\frac{23-4\sqrt{3}}{\sqrt{\left(2-\sqrt{3}\right)^2}+3}\)=\(\frac{23-4\sqrt{3}}{2+3-\sqrt{3}}=\frac{23-4\sqrt{3}}{5-\sqrt{3}}=\frac{\left(23-4\sqrt{3}\right)\left(5+\sqrt{3}\right)}{\left(5+\sqrt{3}\right)\left(5-\sqrt{3}\right)}\) =\(\frac{103+3\sqrt{3}}{22}\)

b, 

\(Q=\frac{x+16}{\sqrt{x}+3}=\frac{x+9+7}{\sqrt{x}+3}=2+\frac{7}{\sqrt{x}+3}\)

Ta có \(2+\frac{7}{\sqrt{x}+3}\)  nhỏ nhất khi \(\sqrt{x}+3\) nhỏ nhất 

 Mà  với điều kiện \(x\ge0\) nên GTNNQ=\(2+\frac{7}{3}=\frac{13}{3}\)

28 tháng 7 2016

Hỏi đáp Toán

2 tháng 3 2020

Câu 3 :

\(ĐKXĐ:x>0\)

 \(P=\left(\frac{2}{\sqrt{x}}+\frac{\sqrt{x}}{\sqrt{x}+2}\right):\frac{2\sqrt{x}}{x+2\sqrt{x}}\)

\(\Leftrightarrow P=\frac{2\sqrt{x}+4+x}{x+2\sqrt{x}}\cdot\frac{x+2\sqrt{x}}{2\sqrt{x}}\)

\(\Leftrightarrow P=\frac{2\sqrt{x}+4+x}{2\sqrt{x}}\)

b) Để P = 3

\(\Leftrightarrow\frac{2\sqrt{x}+4+x}{x+2\sqrt{x}}=3\)

\(\Leftrightarrow2\sqrt{x}+4+x=6\sqrt{x}\)

\(\Leftrightarrow x-4\sqrt{x}+4=0\)

\(\Leftrightarrow\left(\sqrt{x}-2\right)^2=0\)

\(\Leftrightarrow\sqrt{x}-2=0\)

\(\Leftrightarrow\sqrt{x}=2\)

\(\Leftrightarrow x=4\)(tm)

Vậy để \(P=3\Leftrightarrow x=4\)

2 tháng 3 2020

Câu 1 : Hình như sai đề !! Mik sửa :

\(ĐKXĐ:\hept{\begin{cases}x\ge0\\x\ne4\end{cases}}\)

\(A=\left(\frac{x}{x\sqrt{x}-4\sqrt{x}}-\frac{6}{3\sqrt{x}-6}+\frac{1}{\sqrt{x}+2}\right):\left(\sqrt{x}-2+\frac{10-x}{\sqrt{x}+2}\right)\)

\(\Leftrightarrow A=\left(\frac{\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\frac{2}{\sqrt{x}-2}+\frac{1}{\sqrt{x}+2}\right):\left(\frac{x-4+10-x}{\sqrt{x}+2}\right)\)

\(\Leftrightarrow A=\frac{\sqrt{x}-2\sqrt{x}-4+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}:\frac{6}{\sqrt{x}+2}\)

\(\Leftrightarrow A=\frac{-6\left(\sqrt{x}+2\right)}{6\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(\Leftrightarrow A=-\frac{1}{\sqrt{x}-2}\)

b) Để A < 2

\(\Leftrightarrow-\frac{1}{\sqrt{x}-2}< 2\)

\(\Leftrightarrow-1< 2\sqrt{x}-4\)

\(\Leftrightarrow2\sqrt{x}>3\)

\(\Leftrightarrow\sqrt{x}>1,5\)

\(\Leftrightarrow x>2,25\)

Vậy để \(A< 2\Leftrightarrow x>2,25\)

24 tháng 7 2018

a) ĐKXĐ:  \(x>0;x\ne9\)

\(A=\left(\frac{1}{\sqrt{x}+3}+\frac{3}{x-9}\right).\frac{\sqrt{x}-3}{\sqrt{x}}\)

\(=\left(\frac{\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\frac{3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right).\frac{\sqrt{x}-3}{\sqrt{x}}\)

\(=\frac{\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}}\)

\(=\frac{1}{\sqrt{x}+3}\)

24 tháng 7 2018

b)  \(A=\frac{1}{5}\) \(\Rightarrow\)\(\frac{1}{\sqrt{x}+3}=\frac{1}{5}\)

\(\Rightarrow\)\(\sqrt{x}+3=5\)

\(\Leftrightarrow\)\(\sqrt{x}=2\)

\(\Leftrightarrow\)\(x=4\)(t/m ĐKXĐ)

Vậy...

15 tháng 7 2016

ĐKXĐ: \(x\ge0\) và \(x\ne9\)

a/ \(\frac{x\sqrt{x}-3}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}-\frac{2\sqrt{x}-6}{\sqrt{x}+1}-\frac{\sqrt{x}+3}{\sqrt{x}-3}\)

  \(=\frac{x\sqrt{x}-3-\left(2\sqrt{x}-6\right)\left(\sqrt{x}-3\right)-\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}\)

  \(=\frac{x\sqrt{x}-3-2x+12\sqrt{x}-18-x-4\sqrt{x}-3}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}\)

  \(=\frac{x\sqrt{x}+8\sqrt{x}-3x-24}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}=\frac{\sqrt{x}\left(x+8\right)-3\left(x+8\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}\)

    \(=\frac{\left(x+8\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}=\frac{x+8}{\sqrt{x}+1}\)

b/ Thay \(x=14-6\sqrt{5}\) vào P ta được:

   \(P=\frac{14-6\sqrt{5}+8}{\sqrt{14-6\sqrt{5}}+1}=\frac{22-6\sqrt{5}}{3-\sqrt{5}+1}=\frac{22-6\sqrt{5}}{4-\sqrt{5}}\)