Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)}-\frac{14\sqrt{x}+4}{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)}-\frac{\left(2\sqrt{x}+3\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{3x+7\sqrt{x}-6}{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)}-\frac{14\sqrt{x}+4}{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)}-\frac{2x+5\sqrt{x}+3}{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{x-12\sqrt{x}-13}{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)}=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-13\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)}=\frac{\sqrt{x}-13}{\sqrt{x}+3}\)
\(A=\frac{\sqrt{x}+3-16}{\sqrt{x}+3}=1-\frac{16}{\sqrt{x}+3}\ge1-\frac{16}{3}=-\frac{13}{3}\)
\(A_{min}=-\frac{13}{3}\) khi \(x=0\)
a) Rút gọn : Q =\(\left(\frac{\sqrt{x}-3}{\sqrt{x}+3}+\frac{\sqrt{x}+3}{\sqrt{x}-3}-\frac{14}{9-x}\right).\frac{\sqrt{x}-3}{2}\left(x\ge0,x\ne9\right)\)
Q =\(\left(\frac{\sqrt{x}-3}{\sqrt{x}+3}+\frac{\sqrt{x}+3}{\sqrt{x}-3}+\frac{14}{x-9}\right).\frac{\sqrt{x}-3}{2}\)
Q =\(\left(\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\frac{14}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right).\frac{\sqrt{x}-3}{2}\)
Q = \(\frac{x-6\sqrt{x}+9+x+6\sqrt{x}+9+14}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}-3}{2}\)
Q = \(\frac{2x+32}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}-3}{2}\)
Q = \(\frac{2\left(x+16\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}-3}{2}\)
Q = \(\frac{x+16}{\sqrt{x}+3}\)
thay \(x=7-4\sqrt{3}\) vào Q ta được
Q =\(\frac{7-4\sqrt{3}+16}{\sqrt{7-4\sqrt{3}}+3}\) =\(\frac{23-4\sqrt{3}}{\sqrt{\left(2-\sqrt{3}\right)^2+3}}\)
=\(\frac{23-4\sqrt{3}}{2-\sqrt{3}+3}\)
=\(\frac{23-4\sqrt{3}}{5-\sqrt{3}}\)
a, Q = \(\left(\frac{\sqrt{x}-3}{\sqrt{x}+3}+\frac{\sqrt{x}+3}{\sqrt{x}-3}-\frac{14}{9-x}\right)\times\frac{\sqrt{x}-3}{2}\)
= \(\left[\frac{\left(\sqrt{x}-3\right)^2+\left(\sqrt{x}+3\right)^2+14}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right]\times\frac{\sqrt{x}-3}{2}\)
= \(\left[\frac{x-6\sqrt{x}+9+x+6\sqrt{x}+9+14}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right]\times\frac{\sqrt{x}-3}{2}\)
= \(\frac{2x+32}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\times\frac{\sqrt{x}-3}{2}\)
= \(\frac{2\left(x+16\right)\left(\sqrt{x}-3\right)}{2\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
= \(\frac{x+16}{\sqrt{x}+3}\)
Thay \(x=7-4\sqrt{3}\) vào Q ta được:
Q= \(\frac{7-4\sqrt{3}+16}{\sqrt{7-4\sqrt{3}}+3}\) = \(\frac{23-4\sqrt{3}}{\sqrt{\left(2-\sqrt{3}\right)^2}+3}\)=\(\frac{23-4\sqrt{3}}{2+3-\sqrt{3}}=\frac{23-4\sqrt{3}}{5-\sqrt{3}}=\frac{\left(23-4\sqrt{3}\right)\left(5+\sqrt{3}\right)}{\left(5+\sqrt{3}\right)\left(5-\sqrt{3}\right)}\) =\(\frac{103+3\sqrt{3}}{22}\)
b,
\(Q=\frac{x+16}{\sqrt{x}+3}=\frac{x+9+7}{\sqrt{x}+3}=2+\frac{7}{\sqrt{x}+3}\)
Ta có \(2+\frac{7}{\sqrt{x}+3}\) nhỏ nhất khi \(\sqrt{x}+3\) nhỏ nhất
Mà với điều kiện \(x\ge0\) nên GTNNQ=\(2+\frac{7}{3}=\frac{13}{3}\)
Câu 3 :
\(ĐKXĐ:x>0\)
\(P=\left(\frac{2}{\sqrt{x}}+\frac{\sqrt{x}}{\sqrt{x}+2}\right):\frac{2\sqrt{x}}{x+2\sqrt{x}}\)
\(\Leftrightarrow P=\frac{2\sqrt{x}+4+x}{x+2\sqrt{x}}\cdot\frac{x+2\sqrt{x}}{2\sqrt{x}}\)
\(\Leftrightarrow P=\frac{2\sqrt{x}+4+x}{2\sqrt{x}}\)
b) Để P = 3
\(\Leftrightarrow\frac{2\sqrt{x}+4+x}{x+2\sqrt{x}}=3\)
\(\Leftrightarrow2\sqrt{x}+4+x=6\sqrt{x}\)
\(\Leftrightarrow x-4\sqrt{x}+4=0\)
\(\Leftrightarrow\left(\sqrt{x}-2\right)^2=0\)
\(\Leftrightarrow\sqrt{x}-2=0\)
\(\Leftrightarrow\sqrt{x}=2\)
\(\Leftrightarrow x=4\)(tm)
Vậy để \(P=3\Leftrightarrow x=4\)
Câu 1 : Hình như sai đề !! Mik sửa :
\(ĐKXĐ:\hept{\begin{cases}x\ge0\\x\ne4\end{cases}}\)
\(A=\left(\frac{x}{x\sqrt{x}-4\sqrt{x}}-\frac{6}{3\sqrt{x}-6}+\frac{1}{\sqrt{x}+2}\right):\left(\sqrt{x}-2+\frac{10-x}{\sqrt{x}+2}\right)\)
\(\Leftrightarrow A=\left(\frac{\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\frac{2}{\sqrt{x}-2}+\frac{1}{\sqrt{x}+2}\right):\left(\frac{x-4+10-x}{\sqrt{x}+2}\right)\)
\(\Leftrightarrow A=\frac{\sqrt{x}-2\sqrt{x}-4+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}:\frac{6}{\sqrt{x}+2}\)
\(\Leftrightarrow A=\frac{-6\left(\sqrt{x}+2\right)}{6\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(\Leftrightarrow A=-\frac{1}{\sqrt{x}-2}\)
b) Để A < 2
\(\Leftrightarrow-\frac{1}{\sqrt{x}-2}< 2\)
\(\Leftrightarrow-1< 2\sqrt{x}-4\)
\(\Leftrightarrow2\sqrt{x}>3\)
\(\Leftrightarrow\sqrt{x}>1,5\)
\(\Leftrightarrow x>2,25\)
Vậy để \(A< 2\Leftrightarrow x>2,25\)
a) ĐKXĐ: \(x>0;x\ne9\)
\(A=\left(\frac{1}{\sqrt{x}+3}+\frac{3}{x-9}\right).\frac{\sqrt{x}-3}{\sqrt{x}}\)
\(=\left(\frac{\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\frac{3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right).\frac{\sqrt{x}-3}{\sqrt{x}}\)
\(=\frac{\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}}\)
\(=\frac{1}{\sqrt{x}+3}\)
ĐKXĐ: \(x\ge0\) và \(x\ne9\)
a/ \(\frac{x\sqrt{x}-3}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}-\frac{2\sqrt{x}-6}{\sqrt{x}+1}-\frac{\sqrt{x}+3}{\sqrt{x}-3}\)
\(=\frac{x\sqrt{x}-3-\left(2\sqrt{x}-6\right)\left(\sqrt{x}-3\right)-\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{x\sqrt{x}-3-2x+12\sqrt{x}-18-x-4\sqrt{x}-3}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{x\sqrt{x}+8\sqrt{x}-3x-24}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}=\frac{\sqrt{x}\left(x+8\right)-3\left(x+8\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{\left(x+8\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}=\frac{x+8}{\sqrt{x}+1}\)
b/ Thay \(x=14-6\sqrt{5}\) vào P ta được:
\(P=\frac{14-6\sqrt{5}+8}{\sqrt{14-6\sqrt{5}}+1}=\frac{22-6\sqrt{5}}{3-\sqrt{5}+1}=\frac{22-6\sqrt{5}}{4-\sqrt{5}}\)
đề bài có sai chỗ nào k bn???
à k nha bn. Hương ơi giúp mk vs!!!