Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tính được
\(M=\frac{6\sqrt{a}}{\left(\sqrt{a}+1\right)^2}\)
Với mọi a>0; \(a\ne1,\)ta có: \(\frac{6\sqrt{a}}{\left(\sqrt{a}+1\right)^2}>0\Leftrightarrow M>0\left(1\right)\)
Lại có:
\(a-\sqrt{a}+1>0\forall a>0\)
\(\Leftrightarrow2a+4\sqrt{a}+2>6\sqrt{a}\)\(\Rightarrow2>\frac{6\sqrt{a}}{\left(\sqrt{a}+1\right)^2}\Leftrightarrow M< 2\)(2)
Từ (1) và (2) => M đạt giá trị nguyên khi M=1
Bạn tự tìm a nha...
\(M=\left(\frac{2+\sqrt{a}}{\left(\sqrt{a}+1\right)^2}-\frac{\sqrt{a}-2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)\frac{a\left(\sqrt{a}+1\right)-\left(\sqrt{a}+1\right)}{a}\)
\(=\frac{\left(2+\sqrt{a}\right)\left(\sqrt{a}-1\right)-\left(\sqrt{a}-2\right)\left(\sqrt{a}+1\right)}{\left(\sqrt{a}+1\right)^2\left(\sqrt{a}-1\right)}\cdot\frac{\left(\sqrt{a}-1\right)\left(a-1\right)}{a}\)
\(=\frac{2\sqrt{a}-2+a-\sqrt{a}-a-\sqrt{a}+2\sqrt{a}+2}{\left(\sqrt{a}+1\right)\left(a-1\right)}\cdot\frac{\left(\sqrt{a}-1\right)\left(a-1\right)}{a}\)
\(=\frac{2\sqrt{a}}{\left(\sqrt{a}+1\right)\left(a-1\right)}\cdot\frac{\left(\sqrt{a}-1\right)\left(a-1\right)}{a}\)
\(=\frac{2\sqrt{a}\left(\sqrt{a-1}\right)}{a\left(\sqrt{a}+1\right)}=\frac{2\left(\sqrt{a}-1\right)}{\sqrt{a}\left(\sqrt{a}+1\right)}\)
\(N=\left(\frac{\left(\sqrt{a}+1\right)^2-\left(\sqrt{a}-1\right)^2}{a-1}+4\sqrt{a}\right)\cdot\frac{a-1}{\sqrt{a}}\)
\(=\left(\frac{a+1+2\sqrt{a}-a-1+2\sqrt{a}}{a-1}+4\sqrt{a}\right)\cdot\frac{a-1}{\sqrt{a}}\)
\(=\left(\frac{4\sqrt{a}}{a-1}+4\sqrt{a}\right)\cdot\frac{a-1}{\sqrt{a}}=4\sqrt{a}\left(\frac{1}{a-1}+1\right)\cdot\frac{a-1}{\sqrt{a}}=4\cdot\left(a-1\right)\left(\frac{1}{a-1}+1\right)\)
\(=4\cdot\left(a-1\right)\)
vừa tham khảo cách làm vừa check lại hộ tớ với nhé :33
a) \(M=\frac{a+1}{\sqrt{a}}+\frac{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}-1\right)}+\frac{a\sqrt{a}\left(\sqrt{a}-1\right)+\sqrt{a}-1}{\sqrt{a}-a\sqrt{a}}\)
\(M=\frac{a+1}{\sqrt{a}}+\frac{a+\sqrt{a}+1}{\sqrt{a}}+\frac{\left(a\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\sqrt{a}-a\sqrt{a}}\)
\(M=\frac{2a+\sqrt{a}+2}{\sqrt{a}}+\frac{\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\sqrt{a}\left(\sqrt{a}+1\right)\left(1-\sqrt{a}\right)}\)
\(M=\frac{2a+\sqrt{a}+2}{\sqrt{a}}+\frac{a-\sqrt{a}+1}{\sqrt{a}}\)
\(M=\frac{3a+3}{\sqrt{a}}\)
Xét \(M-4=\frac{3a+3}{\sqrt{a}}-4=\frac{3a-4\sqrt{a}+3}{\sqrt{a}}=\frac{3\left(\sqrt{a}-\frac{2}{3}\right)^2+\frac{5}{3}}{\sqrt{a}}>0\forall x\in TXĐ\)
Vậy \(M>4.\)
b) \(N=\frac{6}{M}=\frac{6}{\frac{3a+3}{\sqrt{a}}}=\frac{2\sqrt{a}}{a+1}=\frac{2}{\sqrt{a}+\frac{1}{\sqrt{a}}}\)
Để N nguyên thì \(\sqrt{a}+\frac{1}{\sqrt{a}}\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)
Áp dụng bất đẳng thức Cosi cho hai số dương, ta có \(\sqrt{a}+\frac{1}{\sqrt{a}}\ge2\Rightarrow\sqrt{a}+\frac{1}{\sqrt{a}}=2\)
\(\sqrt{a}+\frac{1}{\sqrt{a}}=2\Leftrightarrow a=1\) (Vô lý)
Vậy không tồn tại giá trị của a để N nguyên.
chị quản lí làm sai rùi