Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Tại x=16 thì A = \(\dfrac{\sqrt{16}-1}{\sqrt{16}+2}=\dfrac{4-1}{4+2}=\dfrac{1}{2}\)
b) B = \(\dfrac{\sqrt{x}+1+\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\div\dfrac{\sqrt{x}}{x+\sqrt{x}}\)
= \(\dfrac{\sqrt{x}+1+x-\sqrt{x}}{x+\sqrt{x}}\times\dfrac{x+\sqrt{x}}{\sqrt{x}}\)
= \(\dfrac{x+1}{\sqrt{x}}\)
B = \(\dfrac{x+1}{\sqrt{x}}\)= 2
⇒ x + 1 = 2\(\sqrt{x}\)
⇒ x - \(2\sqrt{x}\) +1 = 0
⇒ \(\left(\sqrt{x}-1\right)^2\) = 0
⇒ \(\sqrt{x}-1=0\)
⇒ x = 1
1.
a, ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne4\end{matrix}\right.\)
b,
\(M=(\dfrac{\sqrt{x}}{\sqrt{x}-2}\times\dfrac{\sqrt{x}}{\sqrt{x}+2})\times\dfrac{x-4}{\sqrt{4x}}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)+\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\times\dfrac{x-4}{2\sqrt{x}}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}+2+\sqrt{x}-2\right)}{x-4}\times\dfrac{x-4}{2\sqrt{x}}\)
\(=(\sqrt{x}\times2\sqrt{x})\times\dfrac{1}{2\sqrt{x}}\)
\(=\sqrt{x}\)
c,
\(M>3\Leftrightarrow\sqrt{x}>3\Leftrightarrow x>9\)
Bài 2:
a: \(A=\dfrac{3+\sqrt{1-a^2}}{\sqrt{1+a}}:\dfrac{3+\sqrt{1-a^2}}{\sqrt{1-a^2}}=\sqrt{\dfrac{1-a^2}{1+a}}=\sqrt{1-a}\)
b: Để A=căn A thì A=1 hoặc A=0
=>A=1
=>1-a=1
=>a=0
c: Thay \(a=\dfrac{\sqrt{3}}{2+\sqrt{3}}=\sqrt{3}\left(2-\sqrt{3}\right)=2\sqrt{3}-3\) vào A, ta được:
\(A=\sqrt{1-2\sqrt{3}+3}=\sqrt{4-2\sqrt{3}}=\sqrt{3}-1\)
Bài 1:
a: ĐKXĐ: 2x+3>=0 và x-3>0
=>x>3
b: ĐKXĐ:(2x+3)/(x-3)>=0
=>x>3 hoặc x<-3/2
c: ĐKXĐ: x+2<0
hay x<-2
d: ĐKXĐ: -x>=0 và x+3<>0
=>x<=0 và x<>-3
điều kiện xác định : \(x\ge0;x\ne1\)
a) ta có : \(A=\left(\dfrac{1}{1-\sqrt{x}}+\dfrac{1}{1+\sqrt{x}}\right):\left(\dfrac{1}{1-\sqrt{x}}-\dfrac{1}{1+\sqrt{x}}\right)+\dfrac{1}{1-\sqrt{x}}\)
\(\Leftrightarrow A=\left(\dfrac{2}{1-x}\right):\left(\dfrac{2\sqrt{x}}{1-x}\right)+\dfrac{1}{1-\sqrt{x}}\)
\(\Leftrightarrow A=\left(\dfrac{2}{1-x}\right)\left(\dfrac{1-x}{2\sqrt{x}}\right)+\dfrac{1}{1-\sqrt{x}}=\dfrac{1}{\sqrt{x}}+\dfrac{1}{1-\sqrt{x}}\)ta có : \(x=7+4\sqrt{3}\Rightarrow\sqrt{x}=\sqrt{7+4\sqrt{3}}=\sqrt{\left(2+\sqrt{3}\right)^2}=2+\sqrt{3}\)
\(\Rightarrow A=\dfrac{1}{2+\sqrt{3}}+\dfrac{1}{1-2-\sqrt{3}}=\dfrac{5-3\sqrt{3}}{2}\)
b) áp dụng cauchuy-schwarz dạng engel ta có :
\(A=\dfrac{1}{\sqrt{x}}+\dfrac{1}{1-\sqrt{x}}\ge4\)
dấu "=" xảy ra khi : \(\sqrt{x}=1-\sqrt{x}\Leftrightarrow2\sqrt{x}=1\Leftrightarrow\sqrt{x}=\dfrac{1}{2}\Leftrightarrow x=\dfrac{1}{4}\)
vậy ....................................................................................................................
a: \(A=\dfrac{\sqrt{x}-1+\sqrt{x}}{\sqrt{x}\left(1-\sqrt{x}\right)}:\left(\dfrac{\left(\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}{\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)}+\dfrac{\sqrt{x}\left(2x+\sqrt{x}-1\right)}{1+x\sqrt{x}}\right)\)
\(=\dfrac{2\sqrt{x}-1}{\sqrt{x}\left(1-\sqrt{x}\right)}:\left(2x+\sqrt{x}-1\right)\cdot\left(\dfrac{1}{1-x}+\dfrac{\sqrt{x}}{1+x\sqrt{x}}\right)\)
\(=\dfrac{2\sqrt{x}-1}{\sqrt{x}\left(1-\sqrt{x}\right)}:\left[\left(\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)\cdot\dfrac{1+x\sqrt{x}+\sqrt{x}-x\sqrt{x}}{\left(1-x\right)\left(1+x\sqrt{x}\right)}\right]\)
\(=\dfrac{2\sqrt{x}-1}{\sqrt{x}\left(1-\sqrt{x}\right)}:\left[\dfrac{\left(2\sqrt{x}-1\right)\cdot\left(\sqrt{x}+1\right)}{\left(1-\sqrt{x}\right)\left(1+x\sqrt{x}\right)}\right]\)
\(=\dfrac{2\sqrt{x}-1}{\sqrt{x}\left(1-\sqrt{x}\right)}\cdot\dfrac{\left(1-\sqrt{x}\right)\left(x+\sqrt{x}+1\right)}{\left(2\sqrt{x}-1\right)}\)
\(=\dfrac{x+\sqrt{x}+1}{\sqrt{x}}\)
b: Khi x=17-12 căn 2 thì \(A=\dfrac{17-12\sqrt{2}+3-2\sqrt{2}+1}{3-2\sqrt{2}}=7\)
a) Ta có:
\(P=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
\(=\left(\frac{2\sqrt{x}\left(\sqrt{x-3}\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x-3}\right)}+\frac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\frac{3x+3}{x-9}\right):\frac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\)
\(=\left(\frac{2x-6}{x-9}+\frac{x+3\sqrt{x}}{x-9}-\frac{3x+3}{x-9}\right):\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
\(=\frac{2x-6+x+3\sqrt{x}-3x-3}{x-9}.\frac{\sqrt{x}-3}{\sqrt{x}+1}\)
\(=\frac{3\sqrt{x}-9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}+3}\)
\(=\frac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}+3}\)
\(=\frac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)^2}\)
b) \(P< \frac{-1}{2}\Rightarrow\frac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)^2}< \frac{-1}{2}\)
.....Chưa nghĩ ra....
c) Ta có: \(\frac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)^2}\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow\sqrt{x}-3=0\Rightarrow x=9\)
Vậy Min P = 0 khi x =9.
k - kb với tớ nhia mn!
tìm cả đk giúp mik vs
ĐKXĐ: \(x>0;x\ne1\)
\(A=\left(\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\dfrac{2\left(\sqrt{x}+1\right)}{x\left(\sqrt{x}+1\right)}-\dfrac{2-x}{x\left(\sqrt{x}+1\right)}\right)\)
\(=\left(\dfrac{x+2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\dfrac{x+2\sqrt{x}}{x\left(\sqrt{x}+1\right)}\right)\)
\(=\dfrac{\left(x+2\sqrt{x}\right).x.\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\left(x+2\sqrt{x}\right)}=\dfrac{x}{\sqrt{x}-1}\)
b.
\(x=4+2\sqrt{3}=\left(\sqrt{3}+1\right)^2\Rightarrow\sqrt{x}=\sqrt{3}+1\)
\(\Rightarrow A=\dfrac{4+2\sqrt{3}}{\sqrt{3}+1-1}=\dfrac{4+2\sqrt{3}}{\sqrt{3}}=\dfrac{6+4\sqrt{3}}{3}\)
c.
Để \(\sqrt{A}\) xác định \(\Rightarrow\sqrt{x}-1>0\Rightarrow x>1\)
Ta có:
\(\sqrt{A}=\sqrt{\dfrac{x}{\sqrt{x}-1}}=\sqrt{\dfrac{x}{\sqrt{x}-1}-4+4}=\sqrt{\dfrac{\left(\sqrt{x}-2\right)^2}{\sqrt{x}-1}+4}\ge\sqrt{4}=2\)
Dấu "=" xảy ra khi \(\sqrt{x}-2=0\Rightarrow x=4\)