Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(A=\frac{12}{3.7}+\frac{12}{7.11}+...+\frac{12}{195.199}\)
\(=3.\left(\frac{4}{3.7}+\frac{4}{7.11}+...+\frac{4}{195.199}\right)\)
\(=3.\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{195}-\frac{1}{199}\right)\)
\(=3.\left(\frac{1}{3}-\frac{1}{199}\right)\)
\(=3.\left(\frac{199}{597}-\frac{3}{597}\right)\)
\(=3.\frac{196}{597}\)
\(=\frac{196}{199}\)
Bài 1 : Thực hiện phép tính :
a, \(\frac{4}{5}+1\frac{1}{6}\cdot\frac{3}{4}\)
= \(\frac{4}{5}+\frac{7}{6}\cdot\frac{3}{4}\)
= \(\frac{4}{5}+\frac{7}{8}\)
= \(\frac{32+35}{40}=\frac{67}{40}\)
b, \(\frac{2}{3}:\left(\frac{3}{4}\cdot\frac{4}{3}\right)+2\)
\(=\frac{2}{3}:1+2\)
\(=\frac{2}{3}+2=\frac{2+6}{3}=\frac{8}{3}\)
c, \(\frac{1}{2}\times\left(\frac{2}{3}+\frac{3}{5}\cdot\frac{5}{7}\right)+1\frac{1}{3}\)
\(=\frac{1}{2}\cdot\left(\frac{2}{3}+\frac{9}{35}\right)+\frac{4}{3}\)
\(=\frac{1}{2}\cdot\frac{97}{105}+\frac{4}{3}\)
\(=\frac{97}{210}+\frac{4}{3}=\frac{377}{210}\)
Bài 2 : Tìm \(x\inℤ\), biết :
a, \(\frac{2}{3}< \frac{x}{6}\le\frac{10}{3}\)
\(\Leftrightarrow\frac{4}{6}< \frac{x}{6}\le\frac{20}{6}\)
mà \(x\inℤ\Rightarrow\text{x}\in\) {\(5;6;7;8;9;10;11;12;13;14;15;16;17;18;19;20\)}
b, \(\frac{1}{3}+x=1\frac{1}{2}\)
\(\frac{1}{3}+x=\frac{3}{2}\)
\(x=\frac{3}{2}+\frac{\left(-1\right)}{3}\)
\(x=\frac{7}{6}\) (loại vì \(x\notinℤ\))
\(\Rightarrow x\in\varnothing\)
c, \(\frac{1}{7}+x=\frac{25}{14}+\frac{5}{14}\)
\(\frac{1}{7}+x=\frac{15}{7}\)
\(x=\frac{15}{7}+\frac{(-1)}{7}\)
\(x=\frac{14}{7}=2\).
\(\frac{1}{20}\left(x-\frac{8}{15}\right)=-\frac{1}{30}\) \(\left(28+\frac{1}{5}\right).\left(\frac{3}{5}.x+\frac{4}{7}\right)=0\)
\(x-\frac{8}{15}=-\frac{1}{30}:\frac{1}{20}\) \(\frac{141}{5}.\left(\frac{3}{5}.x+\frac{4}{7}\right)=0\)
\(x-\frac{8}{15}=-\frac{2}{3}\) \(\frac{3}{5}.x+\frac{4}{7}=0\)
\(x=-\frac{2}{3}+\frac{8}{15}\) \(\frac{3}{5}.x=-\frac{4}{7}\)
\(x=-\frac{2}{15}\) \(x=-\frac{20}{21}\)