Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 4 số cần tìm là a, b, c, d
với 0<a<b<c<d
Vì tổng của hai số bất kì chia hết cho 2 và tổng của ba số bất kì chia hết cho 3 nên các số a, b, c, d khi chia cho 2 hoặc 3 đều phải có cùng số dư
Để a+b+c+d có giá trị nhỏ nhất thì a, b, c, d phải nhỏ nhất và chia 2 hoặc 3 dư 1
Suy ra: a=1
b=7
c=13
d=19
Vậy giá trị nhỏ nhất của tổng 4 số này là: 1+7+13+19=40
Gọi 4 số cần tìm là a, b, c, d (a, b, c, d thuộc n*)
với 0<a<b<c<d
Vì tổng của hai số bất kì chia hết cho 2 và tổng của ba số bất kì chia hết cho 3 nên các số a, b, c, d khi chia cho 2 hoặc 3 đều phải có cùng số dư
Để a+b+c+d có giá trị nhỏ nhất thì a, b, c, d phải nhỏ nhất và chia 2 hoặc 3 dư 1
Suy ra: a=1
b=7
c=13
d=19
Vậy giá trị nhỏ nhất của tổng 4 số này là: 1+7+13+19=40
Nếu cảm thấy đúng thì k cho mình cái!
Gọi 4 số cần tìm là a, b, c, d
với 0<a<b<c<d
Vì tổng của hai số bất kì chia hết cho 2 và tổng của ba số bất kì chia hết cho 3 nên các số a, b, c, d khi chia cho 2 hoặc 3 đều phải có cùng số dư
Để a+b+c+d có giá trị nhỏ nhất thì a, b, c, d phải nhỏ nhất và chia 2 hoặc 3 dư 1
Suy ra: a=1
b=7
c=13
d=19
Vậy giá trị nhỏ nhất của tổng 4 số này là: 1+7+13+19=40
Gọi 4 số cần tìm là a, b, c, d
với 0<a<b<c<d
Vì tổng của hai số bất kì chia hết cho 2 và tổng của ba số bất kì chia hết cho 3 nên các số a, b, c, d khi chia cho 2 hoặc 3 đều phải có cùng số dư
Để a+b+c+d có giá trị nhỏ nhất thì a, b, c, d phải nhỏ nhất và chia 2 hoặc 3 dư 1
Suy ra: a=1
b=7
c=13
d=19
Vậy giá trị nhỏ nhất của tổng 4 số này là: 1+7+13+19=40
Hok tốt !
Cho mình hỏi là tại sao các số a,b,c,d khi chia cho 2 hoặc 3 đều phải cùng số dư. Và để có g trị nhỏ nhất thì sao phải dư một
Gọi 3 phần đó lần lượt là a;b;c (a;b;c > 0)
Theo bài ra ta có: a^3 + b^3 + c^3 = 9512
Do a;b;c tỉ lệ nghịch với 5;2;4 nên
5a = 2b = 4c
= a/ 1/5 = b/ 1/2 = c/ 1/4
=> a^3/ 1/125 = b^3/ 1/8 = c^3/ 1/64
Áp dụng t/c của dãy tỉ số = nhau ta có:
a^3/ 1/125 = b^3/ 1/8 = c^3/ 1/64 = a^3+b^3+c^3/ 1/125+1/8+1/64 = 9512/ 1189/8000 = 64000 = 40^3
=> a^3 = 40^3.1/125 = 8^3; b^3 = 40^3.1/8 = 20^3; c^3 = 40^3.1/64 = 10^3
=> a = 8; b = 20; c = 10
Vậy ...
Bốn số phải có cùng số dư khi chia cho 2 và 3.
Để có tổng nhỏ nhất thì mỗi trong hai số dư này là 1.
Từ đó ta có các số 1, 7, 13 và 19.
Tổng nhỏ nhất của chúng là : 1+7+13+19 = 40.
Vậy GTNN của tổng 4 số này là 40
ai giải giùm đi
chịu