Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(A=\frac{x-2}{3x+2}\)
a) \(A=0\Leftrightarrow\frac{x-2}{3x+2}=0\)
\(\Leftrightarrow x-2=0.\left(3x+2\right)\)
\(\Leftrightarrow x-2=0\)
\(\Leftrightarrow x=2\)
b) \(A< 0\Rightarrow\frac{x-2}{3x+2}< 0\)
\(\Rightarrow\)\(x-2< 0\) ; \(3x+2>0\) hoặc \(x-2>0\) ; \(3x+2< 0\)
\(\Rightarrow\)\(x< 2\); \(3x>-2\) hoặc \(x>2\) ; \(3x< -2\)
\(\Rightarrow\)\(x< 2\); \(x>\frac{-2}{3}\) hoặc \(x>2\) ; \(x< \frac{-2}{3}\)
\(\Rightarrow\frac{-2}{3}< x< 2\) hoặc \(x\in\varnothing\)
Vậy \(-\frac{2}{3}< x< 2\) thì \(A< 0\)
Bài 1 và 2 dễ rồi bạn tự làm được
Bài 3 :
\(a)\) Ta có :
\(\left|2x+3\right|\ge0\)
Mà \(\left|2x+3\right|=x+2\)
\(\Rightarrow\)\(x+2\ge0\)
\(\Rightarrow\)\(x\ge-2\)
Trường hợp 1 :
\(2x+3=x+2\)
\(\Leftrightarrow\)\(2x-x=2-3\)
\(\Leftrightarrow\)\(x=-1\) ( thoã mãn )
Trường hợp 2 :
\(2x+3=-x-2\)
\(\Leftrightarrow\)\(2x+x=-2-3\)
\(\Leftrightarrow\)\(3x=-5\)
\(\Leftrightarrow\)\(x=\frac{-5}{3}\) ( thoã mãn )
Vậy \(x=-1\) hoặc \(x=\frac{-5}{3}\)
Chúc bạn học tốt ~
Chứng minh Cái này :
\(\frac{a^2}{x}+\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}\) với \(x;y>0\)
Quy đòng chuyển vế sẽ tạo thành lũy thừa bậc 2