Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ĐK: \(x\ge0;x\ne1\)
\(C=\left(\frac{\sqrt{x}-2}{x-1}-\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right).\frac{\left(1-x\right)^2}{2}\)
\(=\left(\frac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}\right).\frac{\left(1-x\right)^2}{2}\)
\(=\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}.\frac{\left(1-x\right)^2}{2}\)
\(=\frac{x-\sqrt{x}-2-x-\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}.\frac{\left(1-\sqrt{x}\right)^2\left(1+\sqrt{x}\right)^2}{2}\)
\(=\frac{2\sqrt{x}}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}.\frac{\left(1-\sqrt{x}\right)^2\left(1+\sqrt{x}\right)^2}{2}\)
\(=\sqrt{x}\left(\sqrt{x}-1\right)=x-\sqrt{x}\)
\(A=\left(\frac{1}{\sqrt{x}}-\frac{1}{\sqrt{x}-1}\right)\)\(:\left(\frac{\sqrt{x}+2}{\sqrt{x}-1}-\frac{\sqrt{x}+1}{\sqrt{x}-2}\right)\)
\(=\left(\frac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}-\frac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\right)\)\(:\left(\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)-\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\right)\)
\(=\frac{\left(\sqrt{x}-1-\sqrt{x}\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}:\frac{\left(\sqrt{x}-4-\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{-1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{-3}\)\(=\frac{\sqrt{x}-2}{3\sqrt{x}}\)
\(b,A=0\Leftrightarrow\frac{\sqrt{x}-2}{3\sqrt{x}}=0\Leftrightarrow\sqrt{x}-2=0\)
Mà \(\sqrt{x}+2\ne0\)\(\Rightarrow\)không có giá trị nào của x thỏa mãn \(A=0\)
a, ĐKXĐ : \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)
b, Ta có : \(A=\left(\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}}{x+\sqrt{x}+1}+\frac{1}{1-\sqrt{x}}\right):\frac{\sqrt{x}-1}{2}\)
=> \(A=\left(\frac{x+2+\sqrt{x}\left(\sqrt{x}-1\right)-x-\sqrt{x}-1}{x\sqrt{x}-1}\right)\left(\frac{2}{\sqrt{x}-1}\right)\)
=> \(A=\left(\frac{x-2\sqrt{x}+1}{x\sqrt{x}-1}\right)\left(\frac{2}{\sqrt{x}-1}\right)\)
=> \(A=\frac{2\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
=> \(A=\frac{2}{x+\sqrt{x}+1}\)
c, Ta có : \(A=\frac{2}{x+\sqrt{x}+1}=\frac{2}{\left(\sqrt{x}+\frac{1}{2}\right)^2+\frac{3}{4}}\)
Ta thấy \(\frac{2}{\left(\sqrt{x}+\frac{1}{2}\right)^2+\frac{3}{4}}>0\forall x\ne1\)
\(A=\left(\frac{\sqrt{x}-2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\frac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}\right).\frac{\left(1-x\right)^2}{2}\)
\(A=\left(\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\right).\frac{\left(1-x\right)^2}{2}\)
\(A=\left(\frac{x-\sqrt{x}-2-x-\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\right).\frac{\left(1-x\right)^2}{2}\)
\(A=\frac{2}{\left(\sqrt{x}+1\right)^2.\left(\sqrt{x}-1\right)}.\frac{\left(1+\sqrt{x}\right)^2\left(\sqrt{x}-1\right)^2}{2}\)
\(A=\sqrt{x}-1\)
ý b,c dễ rồi nha
\(A=\left(\frac{1}{x-\sqrt{x}}+\frac{1}{\sqrt{x}-1}\right)\div\frac{\sqrt{x}+1}{x-2\sqrt{x}+1}\)
ĐKXĐ : \(\hept{\begin{cases}x>0\\x\ne1\end{cases}}\)
\(=\left(\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\frac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\right)\div\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)^2}\)
\(=\frac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\times\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}\)
\(=\frac{\sqrt{x}-1}{\sqrt{x}}\)
Để A > 0
=> \(\frac{\sqrt{x}-1}{\sqrt{x}}>0\)
Xét hai trường hợp :
1. \(\hept{\begin{cases}\sqrt{x}-1>0\\\sqrt{x}>0\end{cases}}\Leftrightarrow\hept{\begin{cases}\sqrt{x}>1\\\sqrt{x}>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>1\\x>0\end{cases}}\Leftrightarrow x>1\)
2. \(\hept{\begin{cases}\sqrt{x}-1< 0\\\sqrt{x}< 0\end{cases}}\)( dễ thấy trường hợp này không xảy ra :> )
Vậy với x > 1 thì A > 0