\(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}+\frac{6\sqrt...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2017

a) \(P=\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}+\frac{6\sqrt{x}}{9-x}\)

giá trị của biểu thức P được xác định khi

\(\hept{\begin{cases}\sqrt{x}+3\ne0\\\sqrt{x}-3\ne0\\9-x\ne0\end{cases}\Rightarrow}\hept{\begin{cases}\forall x\\x\ne9\end{cases}}\Rightarrow x\ne9\)

vậy ĐKXĐ của P là \(x\ne9\)

Rút gọn

\(P=\frac{2\sqrt{x}\left(\sqrt{x}-3\right)}{x-9}+\frac{\sqrt{x}\left(3+\sqrt{x}\right)}{x-9}-\frac{6\sqrt{x}}{x-9}\)

\(P=\frac{2x-6\sqrt{x}}{x-9}+\frac{3\sqrt{x}+x}{x-9}-\frac{6\sqrt{x}}{x-9}\)

\(P=\frac{2x-6\sqrt{x}+3\sqrt{x}+x-6\sqrt{x}}{x-9}\)

\(P=\frac{3x-9\sqrt{x}}{x-9}\)

\(P=\frac{3\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(P=\frac{3\sqrt{x}}{\sqrt{x}+3}\)

6 tháng 9 2019

mọi ng ơi mk viết thiếu dấu ngoặc nha.thiếu ngoặc lownns nha. đóng ngoắc ở trước dấu chia

16 tháng 12 2021
Mấy bn ới giúp mik vssssssss

a)ĐKXĐ :\(x\ge0;x\ne9\)

khai triển => \(P=\frac{x-4}{\sqrt{x}+1}\)

b) Ta có :\(x=\sqrt{14-6\sqrt{5}}=\sqrt{\left(3-\sqrt{5}\right)^2}=3-\sqrt{5}\)
 

Thay vào P ta có : \(P=\frac{3-\sqrt{5}-4}{\sqrt{3-\sqrt{5}}+1}=-\frac{7+\sqrt{5}}{\sqrt{3-\sqrt{5}}+1}\)

1. Cho biểu thức:\(C=\frac{3x+\sqrt{9x}-3}{x+\sqrt{x}-2}-\frac{\sqrt{x}+\:1}{\sqrt{x}+\:2}+\frac{\sqrt{x}+2}{1-\sqrt{x}}\)    a) Tìm điều kiện của x để C có nghĩa.    b) Rút gọn C.    c) Tìm các giá trị nguyên của x để giá trị C là số ngueyeenn.2. Cho biểu thức: \(A=x^2-3x\sqrt{y}+2y\)    a) Phân tích A thành nhân tử.    b) Tính giá trị của A khi: \(x=\frac{1}{\sqrt{6}-2}\); \(y=\frac{1}{9+4\sqrt{5}}\)3. Rút gọn rồi tính...
Đọc tiếp

1. Cho biểu thức:

\(C=\frac{3x+\sqrt{9x}-3}{x+\sqrt{x}-2}-\frac{\sqrt{x}+\:1}{\sqrt{x}+\:2}+\frac{\sqrt{x}+2}{1-\sqrt{x}}\)

    a) Tìm điều kiện của x để C có nghĩa.

    b) Rút gọn C.

    c) Tìm các giá trị nguyên của x để giá trị C là số ngueyeenn.


2. Cho biểu thức: \(A=x^2-3x\sqrt{y}+2y\)

    a) Phân tích A thành nhân tử.

    b) Tính giá trị của A khi: \(x=\frac{1}{\sqrt{6}-2}\)\(y=\frac{1}{9+4\sqrt{5}}\)


3. Rút gọn rồi tính giá trị của biểu thức tại \(x=3\)

\(M=\frac{\sqrt{x-2\sqrt{2}}}{\sqrt{x^2-4x\sqrt{2}+8}}-\frac{\sqrt{x+2\sqrt{2}}}{\sqrt{x^2+4x\sqrt{2}+8}}\)


4. Cho biểu thức: ​\(\frac{\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}}{\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1}\)với \(x\ge0\)và \(x\:\ne9\)

    a) Rút gọn P.

    b) Tìm giá trị của x ​để \(P\:< -\frac{1}{2}\)

    c) Tìm giá trị của x ​để P có giá trị nhỏ nhất.


5. Cho biểu thức:

\(Q=\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\)

    a) Tìm giá trị của x để Q có nghĩa.

    b) Rút gọn Q.

    c) Tìm giá trị của của x để Q có giá trị nguyên.

4
11 tháng 5 2017

moi tay

8 tháng 6 2017

giải giùm mình bài 5 với

a: \(P=\dfrac{x+\sqrt{x}+1+11\sqrt{x}-11+34}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}:\dfrac{x+\sqrt{x}+1-x+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(=\dfrac{x+12\sqrt{x}+24}{\sqrt{x}+2}\)

b: Thay \(x=3-2\sqrt{2}\) vào P, ta được:

\(P=\dfrac{3-2\sqrt{2}+12\left(\sqrt{2}-1\right)+24}{\sqrt{2}-1+2}\)

\(=\dfrac{27-2\sqrt{2}+12\sqrt{2}-12}{\sqrt{2}+1}=5+5\sqrt{2}\)

10 tháng 9 2017

Kết quả rút gọn: \(P=\frac{\sqrt{x}+2}{\sqrt{x}-1}\)

\(M=\frac{x+12}{\sqrt{x}-1}.\frac{\sqrt{x}-1}{\sqrt{x}+2}=\frac{x+12}{\sqrt{x}+2}\)

\(M=\frac{x-4+16}{\sqrt{x}+2}=\sqrt{x}-2+\frac{16}{\sqrt{x}+2}=\left(\sqrt{x}+2+\frac{16}{\sqrt{x}+2}\right)-4\)

Âp dụng BĐT AM-GM cho 2 số không âm ta có: 

\(M\ge2\sqrt{\left(\sqrt{x}+2\right).\frac{16}{\sqrt{x}+2}}-4=2.4-4=4\)

Vậy min M =4. Dấu bằng xảy ra \(\Leftrightarrow\left(\sqrt{x}+2\right)^2=16\Leftrightarrow\sqrt{x}+2=4\Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\left(tm\right)\)

26 tháng 10 2017

\(P=\left(\frac{3}{x-1}+\frac{1}{\sqrt{x}+1}\right):\frac{1}{\sqrt{x}+1}\) \(ĐKXĐ:x\ne1\)

\(P=\left(\frac{3}{x-1}+\frac{\sqrt{x}-1}{x-1}\right):\frac{1}{\sqrt{x}+1}\)

\(P=\frac{\sqrt{x}+2}{x-1}.\left(\sqrt{x}+1\right)\)

\(P=\frac{\sqrt{x}+2}{\sqrt{x}-1}\)

b) theo câu a) \(P=\frac{\sqrt{x}+2}{\sqrt{x}-1}\) với \(ĐKXĐ:x\ne1\)

theo bài ra \(P=\frac{5}{4}\)thì \(\Leftrightarrow\frac{\sqrt{x}+2}{\sqrt{x}-1}=\frac{5}{4}\)

\(\Leftrightarrow\left(\sqrt{x}+2\right).4=\left(\sqrt{x}-1\right).5\)

\(\Leftrightarrow4\sqrt{x}+8=5\sqrt{x}-5\)

\(\Leftrightarrow-\sqrt{x}+13=0\)

\(\Leftrightarrow-\sqrt{x}=-13\)

\(\Leftrightarrow\sqrt{x}=13\)

\(\Leftrightarrow x=169\)

vậy \(x=169\)khi \(P=\frac{5}{4}\)