Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
1.p = 0 <=> Tử thức = 0
2.p > 0 <=> Tử thức và mẫu thức cùng dấu.
3.p < 0 <=> Tử thức và mẫu thức khác dấu.
b) Q = x2 - 2/5x
<=> Q = x(x-2/5)
1. Q = 0 <=> x = 0 hoặc x = 2/5
2. Q > 0 <=> x > 2/5 hoặc x <0
3. Q < 0 <=> x và x - 2/5 trái dấu
1.
a) \(\frac{x+2}{2x-3}< 0\) ( ĐKXĐ : x ≠ 3/2 )
Xét hai trường hợp :
1. \(\hept{\begin{cases}x+2< 0\\2x-3>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< -2\\x>\frac{3}{2}\end{cases}}\)( loại )
9. \(\hept{\begin{cases}x+2>0\\2x-3< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>-2\\x< \frac{3}{2}\end{cases}}\Leftrightarrow-2< x< \frac{3}{2}\)
=> Với \(-2< x< \frac{3}{2}\)thì tmđb
b) \(\frac{x\left(x-2\right)}{x^2+3}>0\)
Vì x2 + 3 ≥ 3 > 0 ∀ x
nên ta chỉ cần xét x( x - 2 ) > 0
1. \(\hept{\begin{cases}x>0\\x-2>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>0\\x>2\end{cases}}\Leftrightarrow x>2\)
2. \(\hept{\begin{cases}x< 0\\x-2< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 0\\x< 2\end{cases}}\Leftrightarrow x< 0\)
Vậy \(\orbr{\begin{cases}x>2\\x< 0\end{cases}}\)thì tmđb
2.
A = x2 + 4x = x( x + 4 )
Để A dương => A > 0
<=> x( x + 4 ) > 0
Xét hai trường hợp
1. \(\hept{\begin{cases}x>0\\x+4>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>0\\x>-4\end{cases}}\Leftrightarrow x>0\)
2. \(\hept{\begin{cases}x< 0\\x+4< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 0\\x< -4\end{cases}}\Leftrightarrow x< -4\)
Vậy với \(\orbr{\begin{cases}x>0\\x< -4\end{cases}}\)thì tmđb
B = ( x - 3 )( x + 7 )
Để B dương => B > 0
<=> ( x - 3 )( x + 7 ) > 0
Xét hai trường hợp :
1. \(\hept{\begin{cases}x-3>0\\x+7>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>3\\x>-7\end{cases}}\Leftrightarrow x>3\)
2. \(\hept{\begin{cases}x-3< 0\\x+7< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 3\\x< -7\end{cases}}\Leftrightarrow x< -7\)
Vậy với \(\orbr{\begin{cases}x>3\\x< -7\end{cases}}\)thì tmđb
C = ( 1/2 - x )( 1/3 - x )
Để C dương => C > 0
<=> ( 1/2 - x )( 1/3 - x ) > 0
Xét hai trường hợp
1. \(\hept{\begin{cases}\frac{1}{2}-x>0\\\frac{1}{3}-x>0\end{cases}}\Leftrightarrow\hept{\begin{cases}-x>-\frac{1}{2}\\-x>-\frac{1}{3}\end{cases}}\Leftrightarrow\hept{\begin{cases}x< \frac{1}{2}\\x< \frac{1}{3}\end{cases}}\Leftrightarrow x< \frac{1}{3}\)
2. \(\hept{\begin{cases}\frac{1}{2}-x< 0\\\frac{1}{3}-x< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}-x< -\frac{1}{2}\\-x< -\frac{1}{3}\end{cases}}\Leftrightarrow\hept{\begin{cases}x>\frac{1}{2}\\x>\frac{1}{3}\end{cases}}\Leftrightarrow x>\frac{1}{2}\)
Vậy với \(\orbr{\begin{cases}x< \frac{1}{3}\\x>\frac{1}{2}\end{cases}}\)thì tmđb
Bn ơi,cho mik hỏi:trong hai biểu thức ở câu a và b sao ko có x vậy?
Bn gõ nhầm ah?
a)*TH1: 2x+1>0 .Suy ra: |2x+1|=2x+1. Suy ra A=5x-2-2x-1=5x-2x-2-1=3x-3
*TH2: 2x+1<0. Suy ra: |2x+1|=-2x-1. Suy ra: A= 5x-2+2x+1=5x+2x-2+1=7x-1
b) Ta có: A>0.Suy ra: 5x-2>|2x+1|. Suy ra: 5x-2>0. Suy ra:5x>2. Suy ra x>2/5.
Vậy, nếu x>2/5 thì A>0.
a.
TH1: 2x+1>=0 => x >=1/2
=>5x-2-(2x+1)
=5x-2-2x-1
=3x-2
TH2:2x+1<0 => x <1/2
=>5x-2- [-(2x-1)]
=5x-2+2x-1
=7x-3
Vậy A=3x-2 khi x>=1/2
A=7x-3 khi x<1/2
b.TH1:x>=1/2
=>A=3x-2
Ta có :
2=3x-2
3x=4
x=4/3 (chọn vì x >= 1/2)
TH2:x <1/2
=>A= 7x-3
Ta có:
2=7x-3
7x=5
=>x=5/7 (loại vì x <1/2)
Vậy x=4/3 thì A=2
a) \(\left(2x-3\right)\left(x+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x-3=0\\x+2=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{3}{2}\\x=-2\end{cases}}\)
Vậy \(\orbr{\begin{cases}x=\frac{3}{2}\\x=-2\end{cases}}\)
b) \(\left(2x-3\right)\left(x+2\right)>0\)
\(\Rightarrow\orbr{\begin{cases}2x-3>0;x+2>0\\2x-3< 0;x+2< 0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x>\frac{3}{2}\\x< -2\end{cases}}\)
Vậy \(\orbr{\begin{cases}x>\frac{3}{2}\\x< -2\end{cases}}\)
c) \(\left(2x-3\right)\left(x+2\right)< 0\)
\(\Rightarrow\begin{cases}2x-3>0;x+2< 0\\2x-3< 0;x+2>0\end{cases}\)
\(\Rightarrow\orbr{\begin{cases}x>\frac{3}{2};x< -2\left(\text{vô lý}\right)\\\frac{3}{2}>x>-2\end{cases}}\)
Vậy \(\frac{3}{2}>x>-2\)
a, A = (2x - 3)(x + 2) = 0
<=> (2x - 3) = 0 hoặc (x + 2) = 0
<=> 2x = 3 hoặc x = -2
<=> x = 3/2 hoặc x = -2
b, A = (2x - 3)(x + 2) > 0
<=> (2x -3) và (x + 2) cùng dấu
- TH1: 2x - 3 > 0 và x + 2 > 0
=> 2x > 3 và x > -2
=> x > 3/2 và x > - 2
Vậy x > 3/2
- TH2: 2x - 3 < 0 và x + 2 < 0
=> 2x < 3 và x < -2
=> x < 3/2 và x < -2
Vậy x < -2
c, A = (2x - 3)(x + 2) < 0
<=> (2x - 3) và (x + 2) trái dấu
- TH1: 2x - 3 < 0 và x + 2 > 0
=> 2x < 3 và x > -2
=> x < 3/2 và x > -2
=> -2 < x < 3/2
- TH2: 2x - 3 > 0 và x + 2 < 0
=> 2x > 3 và x < -2
=> x > 3/2 và x < -2 (vô lí)
Vậy -2 < x < 3/2