K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2017

a ) \(D=\left(\dfrac{1}{1-x}+\dfrac{1}{1+x}\right):\left(\dfrac{1}{1-x}-\dfrac{1}{1+x}\right)+\dfrac{1}{x+1}\)

\(=\left(\dfrac{1+x+1-x}{\left(1-x\right)\left(1+x\right)}\right):\left(\dfrac{1+x-1+x}{\left(1-x\right)\left(1+x\right)}\right)+\dfrac{1}{x+1}\)

\(=\dfrac{2}{\left(1-x\right)\left(1+x\right)}:\dfrac{2x}{\left(1-x\right)\left(1+x\right)}+\dfrac{1}{x+1}\)

\(=\dfrac{2}{\left(1-x\right)\left(1+x\right)}.\dfrac{\left(1-x\right)\left(1+x\right)}{2x}+\dfrac{1}{x+1}\)

\(=\dfrac{1}{x}+\dfrac{1}{x+1}\)

\(=\dfrac{x+1+x}{x\left(x+1\right)}=\dfrac{2x+1}{x\left(x+1\right)}\)

b ) Khi \(x^2-x=0\Leftrightarrow x\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

Thay 0,1 vào biểu thức D

Khi \(x=0\), ta có :

\(\dfrac{2.0+1}{0.\left(0+1\right)}\) ( ko được )

Khi \(x=1,\) ta có :

\(\dfrac{2.1+1}{1.\left(1+1\right)}=\dfrac{3}{2}\)

c ) Khi \(D=\dfrac{3}{2}\)

Ta có : \(\dfrac{2x+1}{x\left(x+1\right)}=\dfrac{3}{2}\)

\(\Leftrightarrow4x+2=3x^2+3x\)

\(\Leftrightarrow-3x^2+x+2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{2}{3}\end{matrix}\right.\)

Vậy ...........

14 tháng 12 2018

a,ĐK:  \(\hept{\begin{cases}x\ne0\\x\ne\pm3\end{cases}}\)

b, \(A=\left(\frac{9}{x\left(x-3\right)\left(x+3\right)}+\frac{1}{x+3}\right):\left(\frac{x-3}{x\left(x+3\right)}-\frac{x}{3\left(x+3\right)}\right)\)

\(=\frac{9+x\left(x-3\right)}{x\left(x-3\right)\left(x+3\right)}:\frac{3\left(x-3\right)-x^2}{3x\left(x+3\right)}\)

\(=\frac{x^2-3x+9}{x\left(x-3\right)\left(x+3\right)}.\frac{3x\left(x+3\right)}{-x^2+3x-9}=\frac{-3}{x-3}\)

c, Với x = 4 thỏa mãn ĐKXĐ thì

\(A=\frac{-3}{4-3}=-3\)

d, \(A\in Z\Rightarrow-3⋮\left(x-3\right)\)

\(\Rightarrow x-3\inƯ\left(-3\right)=\left\{-3;-1;1;3\right\}\Rightarrow x\in\left\{0;2;4;6\right\}\)

Mà \(x\ne0\Rightarrow x\in\left\{2;4;6\right\}\)

Đề sai rồi bạn

20 tháng 2 2018

ĐKXĐ : \(x\ne0,x\ne\pm2\)

Câu a :

\(A=\left(\dfrac{1}{x-2}-\dfrac{2x}{4-x^2}+\dfrac{1}{x+2}\right).\left(\dfrac{2}{x}-1\right)\)

\(=\dfrac{x+2+2x+x-2}{\left(x-2\right)\left(x+2\right)}.\left(\dfrac{2}{x}-1\right)\)

\(=\dfrac{4x}{\left(x-2\right)\left(x+2\right)}\times\dfrac{2-x}{x}\)

\(=-\dfrac{4}{x+2}\)

Câu b :

Ta có : \(2x^2+x=0\Leftrightarrow x\left(2x+1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{1}{2}\end{matrix}\right.\)

Thay \(x=0\) vào A ta được \(-\dfrac{4}{0+2}=-2\)

Thay \(x=-\dfrac{1}{2}\) vào A ta được \(-\dfrac{4}{-\dfrac{1}{2}+2}=-\dfrac{8}{3}\)

Câu c :

Để \(A=\dfrac{1}{2}\) thì \(-\dfrac{4}{x+2}=\dfrac{1}{2}\)

\(\Leftrightarrow x+2=-8\Leftrightarrow x=-10\)

Câu d :

Để A nguyên dương thì \(-4⋮x+2\)

Xét :

\(Ư\left(-4\right)=-4;-2;-1;1;2;4\)

\(\left\{{}\begin{matrix}x+2=-4\\x+2=-2\\x+2=-1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-6\left(N\right)\\x=-4\left(N\right)\\x=-3\left(N\right)\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x+2=1\\x+2=2\\x+2=4\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-1\left(N\right)\\x=0\left(L\right)\\x=2\left(L\right)\end{matrix}\right.\)

Vậy có 4 giá trị của x thì A nguyên : \(\left\{{}\begin{matrix}x=-6\\x=-4\\x=-3\\x=-1\end{matrix}\right.\)

20 tháng 2 2018

bạn ơi cảm ơn bạn nhiều

3 tháng 1 2019

Đcm học ngu k biết xài caskov

7 tháng 3 2020

a) \(ĐKXĐ:\hept{\begin{cases}x\ne\pm2\\x\ne-3\end{cases}}\)

b) \(P=1+\frac{x+3}{x^2+5x+6}\div\left(\frac{8x^2}{4x^3-8x^2}-\frac{3x}{3x^2-12}-\frac{1}{x+2}\right)\)

\(\Leftrightarrow P=1+\frac{x+3}{\left(x+3\right)\left(x+2\right)}:\left(\frac{8x^2}{4x^2\left(x-2\right)}-\frac{3x}{3\left(x^2-4\right)}-\frac{1}{x+2}\right)\)

\(\Leftrightarrow P=1+\frac{1}{x+2}:\left(\frac{2}{x-2}-\frac{x}{\left(x-2\right)\left(x+2\right)}-\frac{1}{x+2}\right)\)

\(\Leftrightarrow P=1+\frac{1}{x+2}:\frac{2x+4-x-x+2}{\left(x-2\right)\left(x+2\right)}\)

\(\Leftrightarrow P=1+\frac{1}{x+2}:\frac{6}{\left(x-2\right)\left(x+2\right)}\)

\(\Leftrightarrow P=1+\frac{\left(x-2\right)\left(x+2\right)}{6\left(x+2\right)}\)

\(\Leftrightarrow P=1+\frac{x-2}{6}\)

\(\Leftrightarrow P=\frac{x+4}{6}\)

c) Để P = 0

\(\Leftrightarrow\frac{x+4}{6}=0\)

\(\Leftrightarrow x+4=0\)

\(\Leftrightarrow x=-4\)

Để P = 1

\(\Leftrightarrow\frac{x+4}{6}=1\)

\(\Leftrightarrow x+4=6\)

\(\Leftrightarrow x=2\)

d) Để P > 0

\(\Leftrightarrow\frac{x+4}{6}>0\)

\(\Leftrightarrow x+4>0\)(Vì 6>0)

\(\Leftrightarrow x>-4\)

24 tháng 4 2017

Giải bài 14 trang 131 SGK Toán 8 Tập 2 | Giải toán lớp 8Giải bài 14 trang 131 SGK Toán 8 Tập 2 | Giải toán lớp 8

GV
24 tháng 4 2017

Lời giải của bạn Nhật Linh đúng rồi, tuy nhiên cần thêm điều kiện để A có nghĩa: \(x\ne\pm2\)

4 tháng 1 2018

Mk có cách khác vs cách của bn Nhã Yến...

Hỏi đáp ToánHỏi đáp ToánHỏi đáp ToánHỏi đáp ToánHỏi đáp Toán

4 tháng 1 2018

Ta có : x²+4x+1=0 (*)

Dùng MTCT giải phương trình (*) ,ta được :

x1=-2+√3

x2=-2-√3

Thay x=-2+√3 vào biểu thức T ,ta được :

T=2916

Thay x=-2-√3 vào T, ta được :

T=2196

28 tháng 6 2023

Xem lại biểu thức P.

28 tháng 6 2023

loading...

Mình phải đi ăn nên chiều mình làm nốt câu d nhé

1: ĐKXĐ: \(x\notin\left\{0;-1;1\right\}\)

2: \(P=\left(\dfrac{x^2-2x+1}{x^2+x+1}+\dfrac{2x^2-4x-1}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{1}{x-1}\right)\cdot\dfrac{x^2+1}{x+1}\)

\(=\dfrac{x^3-3x^2+3x-1+2x^2-4x-1+x^3-1}{\left(x-1\right)\left(x^2+x+1\right)}\cdot\dfrac{x^2+1}{x+1}\)

\(=\dfrac{2x^3-x^2-x-3}{\left(x-1\right)\left(x^2+x+1\right)}\cdot\dfrac{x^2+1}{x+1}\)

Để P=0 thì \(2x^3-x^2-x-3=0\)

=>x=3/2