K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 4 2020

a) B là phân số khi n-1\(\ne\)0

<=> n\(\ne\)1

b) thay n=6 (tm) ta được \(B=\frac{-10}{6-1}=\frac{-10}{5}=-2\)

thay n=-5 (tm) ta được \(B=\frac{-10}{-5-1}=\frac{-10}{-6}=\frac{5}{3}\)

c) B có giá trị nguyên khi -10 chia hết cho n-1 (n khác 1)

=> n-1 thuộc Ư (-10)={-10;-5;-2;-1;1;2;5;10}

Ta có bảng

n-1-10-5-2-112510
n-9-4-1023611

ĐCĐK => x=.....

20 tháng 2 2020

Bài 2:

a) Để B là phân số thì n -3 \(\ne\)0 => n\(\ne\)3

b) Để B có giá trị là số nguyên thì n+4 \(⋮\)n-3

\(\frac{n+4}{n-3}\)\(\frac{n-3+7}{n-3}\)\(\frac{7}{n-3}\)Vì n+4 \(⋮\)n-3 nên 7 \(⋮\)n-3

=> n-3 \(\in\)Ư(7) ={ 1;7; -1; -7}

=> n\(\in\){ 4; 10; 2; -4}

Vậy...

c) Bn thay vào r tính ra

20 tháng 2 2020

la 120

13 tháng 3 2017

Ta có:

B=2n+5/n+3=2*(n+3)-1/n+3=2-1/n+3

Mà 2 là số nguyên nên B là số nguyên khi 1/n+3 là số nguyên

Lại có n là số nguyên nên 1/n+3 là số nguyên khi n+3 là ước của 1

Ta có Ư(1)\(\in\){1;-1}

Ta có bảng sau:

n+3| 1 |-1 |

  n | -2 |-4|

Lại có n là số nguyên nên n\(\in\){-2;-4}

Vậy n\(\in\){-2;-4}

13 tháng 3 2017

ta có B=\(\frac{2n+6-1}{n+3}\)=2-\(\frac{1}{n+3}\)vậy để B nguyen thi \(\frac{1}{n+3}\) nguyên

n+3la U(1)=1 hoac -1

n+3=1\(\Rightarrow\) n=-1

n+3=-1\(\Rightarrow\) n=-4

a) Với \(n\in Z\)thì để \(\frac{5}{n-4}\)có giá trị là số nguyên

\(\Rightarrow5⋮n-4\)

\(\Rightarrow n-4\)là ước của \(5\)

Mà các ước của \(5\) là : \(5;1;-1;-5\)

Ta có bảng sau :

   \(n-4\)\(5\)\(1\)\(-1\)\(-5\)
   \(n\)\(9\)\(5\) \(3\)\(\)\(-1\)
\(KL\)\(TM\)\(TM\)\(TM\)\(TM\)

Vậy \(n\in\left\{9;5;3;-1\right\}\)thì \(\frac{5}{n-4}\)có giá trị là số nguyên.

b) Với \(n=5\)

\(\Rightarrow A=\frac{5}{n-4}=\frac{5}{5-4}=5\)

Với \(n=-1\)

\(\Rightarrow A=\frac{5}{n-4}=\frac{5}{\left(-1\right)-4}=-1\)

20 tháng 7 2019

a) Để \(A\inℤ\)

\(\Rightarrow3⋮n-5\)

\(\Rightarrow n-5\inƯ\left(3\right)\)

\(\Rightarrow n-5\in\left\{1;-1;3;-3\right\}\)

Lập bảng xét các trường hợp : 

\(n-1\)\(1\)\(3\)\(-1\)\(-3\)
\(n\)\(2\)\(4\)\(0\)\(-2\)

Vậy \(n\in\left\{2;4;0\right\}\)

b) Để \(\frac{n+9}{n-6}\inℕ\Leftrightarrow n+9⋮n-6\)

\(\Rightarrow n-6+15⋮n-6\)

Vì \(n-6⋮n-6\)

\(\Rightarrow15⋮n-6\)

\(\Rightarrow n-6\inƯ\left(15\right)\)

\(\Rightarrow n-6\in\left\{\pm1;\pm3;\pm5;\pm15\right\}\)

Lập bảng xét các trường hợp ta có: 

\(n-6\)\(1\)\(-1\)\(3\)\(-3\)\(5\)\(-5\)\(15\)\(-15\)
\(n\)\(7\)\(5\)\(9\)\(3\)\(11\)\(1\)\(21\)\(-9\)

Vậy \(n\in\left\{7;5;9;3;11;1;21;-9\right\}\)