K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2017

P= (x-a)(x-b)(x-c)

=(x2-ax-bx+ab)(x-c)

=x3-cx2-ax2+acx-bx2+bcx+abx-abc

=x3-(a+b+c)x2+(ab+bc+ca)x-abc

=x3-12x2+47x-60

b) Ta có: (x-4)3=x3-12x2+48x-64

=> P=(x-4)3-(x+4)

Đặt t=x-4

P=t3-t

=t(t2-1)

=t(t+1)(t-1)

=(x-4)(x-3)(x-5)

\(\left|x\right|=3\Rightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)

Với x=3 thì

P=\(\left(3-4\right)\left(3-3\right)\left(3-5\right)=0\)

Với x=-3 thì

\(P=\left(-3-4\right)\left(-3-3\right)\left(-3-5\right)=-336\)

\(a,P=\left(x-a\right)\left(x-b\right)\left(x-c\right)\)

\(=(x^2-ax-bx+ac)\left(x-c\right)\)

\(=x^3-cx^2-ax^2+cax-bx^2+bcx+abx-abc\)

\(=x^3-x^2\left(a+b+c\right)+x\left(ab+bc+ca\right)-abc\)

\(=x^3-12x^2+47x-60\)

\(b,\) Ta có \(\left(x-4\right)^3=x^3-12x^2+48x-64\)

\(\Rightarrow P=\left(x-4\right)^3-\left(x+4\right)\)

Đặt \(t=x-4\)

\(\Rightarrow P=t^3-t\)

\(\Rightarrow P=t\left(t-1\right)\left(t+1\right)\)

\(\Rightarrow P=\left(x-4\right)\left(x-3\right)\left(x-5\right)\)

\(\left|x\right|=3\Rightarrow x=\orbr{\begin{cases}3\\-3\end{cases}}\)

Với \(x=3\Rightarrow P=0\)

Với \(x=-3\Rightarrow P=-336\)

1.Cho biểu thức: \(M=\frac{3}{229}\left(2+\frac{1}{433}\right)-\frac{1}{229}.\frac{432}{433}-\frac{4}{229.433}\)  a,Đặt \(a=\frac{1}{229},b=\frac{1}{433}\) ,rút gọn M theo a,bb, Tính giá trị của M.2. Tính giá trị của biểu thức:  \(P=x^4-17x^3+17x^2-17x+20\)khi x=163 Chứng tỏ rằng các biểu thức sau ko phụ thuộc vào giá trị của biến x:\(4\left(x-6\right)-x^2\left(2+3x\right)+x\left(5x-4\right)+3x^2\left(x-1\right)\)4. Biến tổng sau...
Đọc tiếp

1.Cho biểu thức:

 \(M=\frac{3}{229}\left(2+\frac{1}{433}\right)-\frac{1}{229}.\frac{432}{433}-\frac{4}{229.433}\)  

a,Đặt \(a=\frac{1}{229},b=\frac{1}{433}\) ,rút gọn M theo a,b

b, Tính giá trị của M.

2. Tính giá trị của biểu thức:  \(P=x^4-17x^3+17x^2-17x+20\)khi x=16

3 Chứng tỏ rằng các biểu thức sau ko phụ thuộc vào giá trị của biến x:

\(4\left(x-6\right)-x^2\left(2+3x\right)+x\left(5x-4\right)+3x^2\left(x-1\right)\)

4. Biến tổng sau thành tích:  a(x-y)+b(y-x)

5.Nhân các lũy thừa có cùng cơ số 

a,\(a.a^2.a^3.a^4a^5.a^6...a^{150}\)

b, \(x^{2-k}.x^{1-k}.x^{2k-3}\)\(\left(k\in N,x\ne0\right)\)

6. Xét biểu thức:

\(P=x\left(5x+15y\right)-5y\left(3x-2y\right)-5\left(y^2-2\right)\)

a, Rút gọn P 

b, Có hay k cặp số (x,y) để P=0; P=10?

7.Cho \(\Delta\)ABC nhọn. Vẽ ra phía ngoài của tam giác vuông cân  ABE tại B và tam giác vuông cân ACF tại C. Trên tia đối của tia AH lấy điểm I sao cho AI=BC(H là chân đường vuông góc hạ từ A tới BC. Chứng minh:

a,  \(\Delta\) ABI = \(\Delta\) BEC  

b, BI=CE và BI vuông góc vs CE

c, 3 đường thẳng AH,CE và BF đồng quy tại 1 điểm

        Mọi ng giải hộ mik mấy bài này vs ạ, bài nào mấy bạn giải đc thì giải hộ vs ạ  . Giải chi tiết nha. Cảm ơn ạ

4
29 tháng 8 2018

bai1 

\(3a\left(2+b\right)-a\left(1-b\right)-4ab=6a+3ab-a+ab-4ab=5a=\frac{5}{229}\)

29 tháng 8 2018

bai3

\(M=4\left(X-6\right)-x^2\left(2+3x\right)+x\left(5x-4\right)+3x^2\left(x-1\right)=\)

\(4x-24-2x^2-3x^3+5x^2-4x+3x^3-3x=-24\)

bai 4

\(\text{a(x-y)+b(y-x)}=\left(x-y\right)\left(a-b\right)\)

bai 5

ta co cong thuc tinh tong 1+2+3+4+5+...+150=\(\frac{\left(1+150\right)150}{2}=11325\)

a11325

bai 6

\(p=x\left(5x+15y\right)-5y\left(3x-2y\right)-5y^2+10\)

\(=5x^2+15xy-15xy+10y^2-5y^2+10=5x^2+5y^2+10=5\left(x^2+y^2\right)+10\)

ta nhan thay rang de P=10  thi (x2+y2)=0 suy ra x=y=0 

                                  P=0 thi (x2+y2)=  -2  ma so chinh phuong bao gioi cung lon hon 0 nen truong hop nay vo nghiem de thoa man

1. Chứng minh rằng \(5^{8^{2006}}\) \(+\)\(5\) chia hết cho 62. Tìm nghiệm nguyên dương của phương trình \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)3.Cho biểu thức:P= \(\left(\frac{\sqrt{a}+1}{\sqrt{ab}+1}+\frac{\sqrt{ab}+\sqrt{a}}{\sqrt{ab-1}}-1\right):\left(\frac{\sqrt{a}+1}{\sqrt{ab}+1}-\frac{\sqrt{ab}+\sqrt{a}}{\sqrt{ab}-1}+1\right)\)a) Rút gọn Pb) Cho a+b =1. Tìm giá trị nhỏ nhất của P4. Cho a,b,c là các số thực dương thỏa mãn điều kiện...
Đọc tiếp

1. Chứng minh rằng \(5^{8^{2006}}\) \(+\)\(5\) chia hết cho 6

2. Tìm nghiệm nguyên dương của phương trình \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)

3.Cho biểu thức:

P= \(\left(\frac{\sqrt{a}+1}{\sqrt{ab}+1}+\frac{\sqrt{ab}+\sqrt{a}}{\sqrt{ab-1}}-1\right):\left(\frac{\sqrt{a}+1}{\sqrt{ab}+1}-\frac{\sqrt{ab}+\sqrt{a}}{\sqrt{ab}-1}+1\right)\)

a) Rút gọn P

b) Cho a+b =1. Tìm giá trị nhỏ nhất của P

4. Cho a,b,c là các số thực dương thỏa mãn điều kiện abc = 1.Tìm giá trị nhỏ nhất của biểu thức

P= \(\frac{bc}{a^2b+a^2c}+\frac{ca}{b^2c+b^2a}+\frac{ab}{c^2a+c^2b}\)

5. Tìm các số nguyên x,y thỏa mãn hằng đẳng thức:

\(2xy^2+x+y+1=x^2+2y^2+xy\)

6. Đa thức \(F\left(x\right)\)chia cho \(x+1\)dư 4, chia cho \(x^2+1\)dư \(2x+3\). Tìm đa thức dư khi \(F\left(x\right)\) chia cho \(\left(x+1\right)\left(x^2+1\right)\)

Giúp em ạ. Giải từng câu cũng được ạ. Mai em nộp bài rồi. 

1
9 tháng 2 2017

\(P=\frac{\frac{1}{a^2}}{\frac{1}{b}+\frac{1}{c}}+\frac{\frac{1}{b^2}}{\frac{1}{a}+\frac{1}{c}}+\frac{\frac{1}{c^2}}{\frac{1}{a}+\frac{1}{b}}\)

Đặt \(\hept{\begin{cases}x=\frac{1}{a}\\y=\frac{1}{b}\\z=\frac{1}{c}\end{cases}}\Rightarrow xyz=1\Rightarrow P=\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\)

Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có: 

\(P\ge\frac{\left(x+y+z\right)^2}{y+z+x+z+x+y}=\frac{x+y+z}{2}\ge\frac{3\sqrt[3]{xyz}}{2}=\frac{3}{2}\)

Dấu "=" xảy ra khi \(x=y=z\Leftrightarrow a=b=c=1\)

Cần cách khác thì nhắn cái

24 tháng 6 2017

Phân thức đại số

24 tháng 11 2018

       \(3x^2+3y^2+4xy+2x-2y+2=0\)

\(\Rightarrow\left(2x^2+4xy+2y^2\right)+\left(x^2+2x+1\right)+\left(y^2-2y+1\right)=0\)

\(\Rightarrow2\left(x+y\right)^2+\left(x+1\right)^2+\left(y-1\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}x+y=0\\x+1=0\\y-1=0\end{cases}\Rightarrow\hept{\begin{cases}x=-1\\y=1\end{cases}}}\)

Khi đó: \(A=\left(-1+1\right)^{2014}+\left(-1+2\right)^{2015}+\left(1-1\right)^{2016}\)

\(=0+1+0=1\)

22 tháng 12 2018

M = a3 + b3 + 3ab(a2 + b2) + 6a2b2(a + b)

= (a + b)(a2 - ab + b2) + 3ab((a + b)2 - 2ab) + 6a2b2(a + b)

= (a + b)((a + b)2 - 3ab) + 3ab((a + b)2 - 2ab) + 6a2b2(a + b)

= 1 - 3ab + 3ab(1 - 2ab) + 6a2b2

= 1 - 3ab + 3ab - 6a2b2 + 6a2b2 = 1

1.Cho biểu thức: \(M=\frac{3}{229}\left(2+\frac{1}{433}\right)-\frac{1}{229}.\frac{432}{433}-\frac{4}{229.433}\) a,Đặt \(a=\frac{1}{229},b=\frac{1}{433}\) ,rút gọn M theo a,b b, Tính giá trị của M. 2. Tính giá trị của biểu thức: \(P=x^4-17x^3+17x^2-17x+20\)khi x=16 3 Chứng tỏ rằng các biểu thức sau ko phụ thuộc vào giá trị của biến x: \(4\left(x-6\right)-x^2\left(2+3x\right)+x\left(5x-4\right)+3x^2\left(x-1\right)\) 4. Biến tổng...
Đọc tiếp

1.Cho biểu thức:

\(M=\frac{3}{229}\left(2+\frac{1}{433}\right)-\frac{1}{229}.\frac{432}{433}-\frac{4}{229.433}\)

a,Đặt \(a=\frac{1}{229},b=\frac{1}{433}\) ,rút gọn M theo a,b

b, Tính giá trị của M.

2. Tính giá trị của biểu thức: \(P=x^4-17x^3+17x^2-17x+20\)khi x=16

3 Chứng tỏ rằng các biểu thức sau ko phụ thuộc vào giá trị của biến x:

\(4\left(x-6\right)-x^2\left(2+3x\right)+x\left(5x-4\right)+3x^2\left(x-1\right)\)

4. Biến tổng sau thành tích: a(x-y)+b(y-x)

5.Nhân các lũy thừa có cùng cơ số

a,\(a.a^2.a^3.a^4a^5.a^6...a^{150}\)

b, \(x^{2-k}.x^{1-k}.x^{2k-3}\)\(\left(k\in N,x\ne0\right)\)

6. Xét biểu thức:

\(P=x\left(5x+15y\right)-5y\left(3x-2y\right)-5\left(y^2-2\right)\)

a, Rút gọn P

b, Có hay k cặp số (x,y) để P=0; P=10?

7.Cho \(\Delta\)ABC nhọn. Vẽ ra phía ngoài của tam giác vuông cân ABE tại B và tam giác vuông cân ACF tại C. Trên tia đối của tia AH lấy điểm I sao cho AI=BC(H là chân đường vuông góc hạ từ A tới BC. Chứng minh:

a, \(\Delta\) ABI = \(\Delta\) BEC

b, BI=CE và BI vuông góc vs CE

c, 3 đường thẳng AH,CE và BF đồng quy tại 1 điểm

Mọi ng giải hộ mik mấy bài này vs ạ, bài nào mấy bạn giải đc thì giải hộ vs ạ . Giải chi tiết nha. Cảm ơn ạ

1
30 tháng 8 2018

Bài 1:

a) Đặt \(a=\dfrac{1}{229},b=\dfrac{1}{433}\), ta được

\(M=3a\left(2+b\right)-a\left(1-b\right)-4ab\)

\(M=6a+3ab-a+ab-4ab\)

\(M=5a\)

b) Ta có:

\(M=5a\)

\(M=\dfrac{5}{229}\)

Bài 2:

\(x=16\)

\(\Rightarrow x+1=17\left(1\right)\)

Thay (1) vào P, ta được:

\(P=x^4-\left(x+1\right)x^3+\left(x+1\right)x^2-\left(x+1\right)x+x+1+3\)

\(P=x^4-x^4-x^3+x^3+x^2-x^2-x+x+1+3\)

\(P=4\)

Bài 3:

\(4\left(x-6\right)-x^2\left(2+3x\right)+x\left(5x-4\right)+3x^2\left(x-1\right)\)

\(=4x-24-2x^2-3x^3+5x^2-4x+3x^3-3x^2\)

\(=-24\)

Vậy biểu thức không phụ thuộc vào x

Bài 4:

\(a\left(x-y\right)+b\left(y-x\right)\)

\(=a\left(x-y\right)-b\left(x-y\right)\)

\(=\left(x-y\right)\left(a-b\right)\)

Bài 5:

a) \(a.a^2.a^3.a^4.a^5a^6...a^{150}\)

\(=a^{1+2+3+4+5+6+...+150}\)

Đặt \(A=1+2+3+...+150\)

\(A=\dfrac{150-1+1}{2}\left(1+150\right)\)

\(A=75.151\)

\(A=2265\)

Vậy 1 + 2 + 3 +...+ 150 = 2265 (1)

Thay (1) vào ta được

\(a^{1+2+3+4+5+6+...+150}=a^{2265}\)

b) \(x^{2-k}.x^{1-k}.x^{2k-3}\)

\(=x^{2-k+1-k+2k-3}\)

\(=x^0\)

\(=1\)

Bài 6:

a) \(P=x\left(5x+15y\right)-5y\left(3x-2y\right)-5\left(y^2-2\right)\)

\(P=5x^2+15xy-15xy+10y^2-5y^2+10\)

\(P=5x^2+5y^2+10\)

b) \(P=0\)

\(\Rightarrow5x^2+5y^2+10=0\)

\(\Rightarrow5\left(x^2+y^2+2\right)=0\)

\(\Rightarrow x^2+y^2+2=0\)

\(\Rightarrow x^2+y^2=-2\)

\(x^2\ge0\)

\(y^2\ge0\)

\(\Rightarrow x^2+y^2\ge0\)

\(x^2+y^2=-2\)

=> Không tồn tại cặp số x và y để P = 0

\(P=10\)

\(\Rightarrow5x^2+5y^2+10=10\)

\(\Rightarrow5x^2+5y^2=0\)

\(\Rightarrow5\left(x^2+y^2\right)=0\)

\(\Rightarrow x^2+y^2=0\)

\(x^2\ge0\) với mọi x

\(y^2\ge0\) với mọi y

\(\Rightarrow x^2+y^2\ge0\)

\(x^2+y^2=0\)

\(\Rightarrow\left\{{}\begin{matrix}x^2=0\\y^2=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)