K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2019

Đặt \(Q=\frac{2}{3}.\frac{4}{5}.\frac{6}{7}.....\frac{400}{401}\)

Áp dụng tính chất \(\frac{a}{b}< \frac{a+m}{b+m}\left(a,b,m\inℕ^∗\right)\)ta có

\(\frac{1}{2}< \frac{1+1}{2+1}=\frac{2}{3}\)

\(\frac{2}{3}< \frac{2+1}{3+1}=\frac{3}{4}\)

...

\(\frac{399}{400}< \frac{399+1}{400+1}=\frac{400}{401}\)

\(\Rightarrow\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.....\frac{399}{400}< \frac{2}{3}.\frac{4}{5}.\frac{6}{7}.....\frac{400}{401}\)

hay P < Q

=> \(P^2< P.Q\)

      \(P^2< \frac{1}{2}.\frac{3}{4}.\frac{5}{6}.....\frac{399}{400}.\frac{2}{3}.\frac{4}{5}.\frac{6}{7}.....\frac{400}{401}\)

       \(P^2< \frac{1.2.3.4.....400}{2.3.4.5.....401}\)

        \(P^2< \frac{1}{401}< \frac{1}{400}< \left(\frac{1}{20}\right)^2\)

Vì P và 1/20 có cùng dấu

\(\Rightarrow P< \frac{1}{20}\)

13 tháng 7 2019

\(A=\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}\)

\(2A=1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\frac{1}{16}-\frac{1}{32}\)

\(2A+A=\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}\right)+\left(1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\frac{1}{16}-\frac{1}{32}\right)\)

\(3A=1-\frac{1}{64}\)

\(3A=\frac{63}{64}\Rightarrow A=\frac{63}{64}\div3=\frac{21}{64}< \frac{1}{3}\)

11 tháng 8 2017

Bài 1:

Ta thấy:

\(\frac{1}{2}>\frac{1}{6};\frac{1}{3}>\frac{1}{6};\frac{1}{4}>\frac{1}{6};\frac{1}{5}>\frac{1}{6};\frac{1}{6}=\frac{1}{6}\)

\(=>\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}>\frac{1}{6}+\frac{1}{6}+\frac{1}{6}+\frac{1}{6}+\frac{1}{6}\)

\(=>\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}>\frac{5}{6}\)

11 tháng 8 2017

Bài 2:

Đặt \(A=\frac{1}{5}+\frac{1}{45}+\frac{1}{117}+...+\frac{1}{1517}\)

Ta thấy \(\frac{1}{5}=\frac{1}{1.5};\frac{1}{45}=\frac{1}{5.9};\frac{1}{117}=\frac{1}{9.13}\)

Theo quy luật như vậy ta có các số tiếp theo là:

\(\frac{1}{13.17}=\frac{1}{221};\frac{1}{17.21}=\frac{1}{357};\frac{1}{21.25}=\frac{1}{525};\frac{1}{25.29}=\frac{1}{725};...\)

Ta có \(A=\frac{1}{5}+\frac{1}{45}+\frac{1}{117}+...+\frac{1}{1517}\)

\(=>A=\frac{1}{1.5}+\frac{1}{5.9}+\frac{1}{9.13}+...+\frac{1}{27.31}\)

\(=>4A=\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{27.31}\)

\(=>4A=\frac{5-1}{1.5}+\frac{9-5}{5.9}+\frac{13-9}{9.13}+...+\frac{31-27}{27.31}\)

\(=>4A=\frac{5}{1.5}-\frac{1}{1.5}+\frac{9}{5.9}-\frac{5}{5.9}+\frac{13}{9.13}-\frac{9}{9.13}+...+\frac{31}{27.31}-\frac{27}{27.31}\)

\(=>4A=1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{27}-\frac{1}{31}\)

\(=>4A=1-\frac{1}{31}=\frac{30}{31}=>A=\frac{30}{31}.\frac{1}{4}=\frac{15}{62}\)

\(2A=\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{101}}\)

\(2A-A=\frac{1}{2^{101}}-\frac{1}{2}\)

\(\Rightarrow A=\frac{1}{2^{101}}-\frac{1}{2}\)

\(\Rightarrow A>0\) ( đpcm )

Bài này phải làm như thế này nha lần trước tui làm nhầm sorry

Study well 

7 tháng 8 2019

uk cám ơn bn nhiều

1 tháng 5 2016

Ta có: 1/22 < 1/1.2

          1/32 < 1/2.3 

          1 /4 2 < 1/3.4

    .. .........................

        1/502 < 1/49.50
=> A < 1/12 + 1/1.2 + 1/2.3 + 1/3.4+......+1/49.50

=> A < 1 + (1-1/50)

=> A < 1+49/50

=> A < 99/55 <2

=> A < 2 

1 tháng 5 2016

Ta có: 1/22 < 1/1.2

          1/32 < 1/2.3 

          1 /4 2 < 1/3.4

    .. .........................

        1/502 < 1/49.50
=> A < 1/12 + 1/1.2 + 1/2.3 + 1/3.4+......+1/49.50

=> A < 1 + (1-1/50)

=> A < 1+49/50

=> A < 99/55 <2

=> A < 2 

16 tháng 3 2017

khó chết đi được tự tính đi chớ

16 tháng 3 2017

15 nha bạn mình làm rùi

16 tháng 9 2017

\(\frac{1010+1111+1212+1313+1414+1515+1616+1717}{2020+2121+2222+2323+2424+2525+2626+2727}\)

\(=\frac{101.10+101.11+...+101.17}{101.20+101.21+...+101.27}\)

\(=\frac{101.\left(10+11+...+17\right)}{101.\left(20+21+...+27\right)}\)

\(=\frac{108}{188}\)

\(=\frac{27}{47}\)

16 tháng 9 2017

\(2>\left(\frac{1}{6}+\frac{2}{15}+\frac{3}{40}+\frac{4}{96}\right)\cdot5.y>\frac{5}{6}\)

\(\Rightarrow2>\left(\frac{1}{6}+\frac{2}{15}+\frac{3}{40}+\frac{1}{24}\right):5.y>\frac{5}{6}\)

\(\Rightarrow2>\left(\frac{20}{120}+\frac{16}{120}+\frac{9}{120}+\frac{5}{120}\right):5.y>\frac{5}{6}\)

\(\Rightarrow2>\frac{5}{12}:5.y>\frac{5}{6}\)

\(\Rightarrow2>\frac{1}{12}.y>\frac{5}{6}\)

Đặt :\(\frac{1}{12}.y=2\Rightarrow y=2:\frac{1}{12}=24\)

\(\frac{1}{12}.y=\frac{5}{6}\Rightarrow y=\frac{5}{6}:\frac{1}{12}=10\)

\(\Rightarrow24>y>10\)

\(\Rightarrow y\in\left\{11;12;...;23\right\}\)

26 tháng 7 2018

chịu lun nhưng cho tao nha

29 tháng 8 2020

Ta có : 

\(A=\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{9.9}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{8.9}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{8}-\frac{1}{9}\)

\(=1-\frac{1}{9}=\frac{8}{9}\Rightarrow A< \frac{8}{9}\)(1)

Lại có \(A=\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{9.9}>\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9.10}=\frac{1}{2}-\frac{1}{10}=\frac{4}{10}=\frac{2}{5}\Rightarrow A>\frac{2}{5}\)(2)

Từ (1) (2) => \(\frac{2}{5}< A< \frac{8}{9}\left(\text{ĐPCM}\right)\)

29 tháng 8 2020

                         Bài làm :

Ta có :

\(A=\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{9.9}>\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)

\(A>\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)

\(A>\frac{1}{2}-\frac{1}{10}\)

\(A>\frac{2}{5}\left(1\right)\)

Ta cũng có  : 

\( A=\frac{1}{2.2}+\frac{1}{3.3}+......+\frac{1}{9.9}< \frac{1}{1.2}+\frac{1}{2.3}+......+\frac{1}{8.9}\)

\(A< 1-\frac{1}{2}+\frac{1}{2}-......+\frac{1}{8}-\frac{1}{9}\)

\(A< 1-\frac{1}{9}\)

\(A< \frac{8}{9}\left(2\right)\)

\(\text{Từ (1) và (2) }\Rightarrow\frac{2}{5}< A< \frac{8}{9}\)

=> Điều phải chứng minh

Chúc bạn học tốt !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!