K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(A=\left(\dfrac{\left(2x+2\sqrt{x}\right)-\left(\sqrt{x}+1\right)}{1-x}+\dfrac{\sqrt{x}\left(2x+\sqrt{x}-1\right)}{1+x\sqrt{x}}\right)\cdot\dfrac{\sqrt{x}\left(1-\sqrt{x}\right)}{2\sqrt{x}-1}\)

\(=\left(2\sqrt{x}-1\right)\cdot\dfrac{\sqrt{x}\left(1-\sqrt{x}\right)}{2\sqrt{x}-1}\cdot\left(\dfrac{\sqrt{x}+1}{1-x}+\dfrac{\sqrt{x}+1}{1+x\sqrt{x}}\right)\)

\(=\sqrt{x}\left(1-\sqrt{x}\right)\cdot\left(\dfrac{-1}{\sqrt{x}-1}+\dfrac{1}{x-\sqrt{x}+1}\right)\)

\(=\sqrt{x}\left(1-\sqrt{x}\right)\cdot\dfrac{-x+\sqrt{x}-1+\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x-\sqrt{x}+1\right)}\)

\(=\dfrac{\sqrt{x}\cdot\left(-x+2\sqrt{x}-2\right)}{-x+\sqrt{x}-1}=\dfrac{\sqrt{x}\left(x-2\sqrt{x}+2\right)}{x-\sqrt{x}+1}\)

c: \(x-2\sqrt{x}+2=\left(\sqrt{x}-1\right)^2+1>=1\)

\(\left(x-\sqrt{x}+1\right)=\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>=\dfrac{3}{4}\)

căn x>=0

=>A không có giá trị lớn nhất

a: \(P=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-2\sqrt{x}-1+2\sqrt{x}+2\)

\(=x-\sqrt{x}+1\)

b: Khi x=9 thì P=9-3+1=7

c: P=3

=>x-căn x-2=0

=>(căn x-2)(căn x+1)=0

=>x=4

27 tháng 11 2018

\(P=\left(\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(x+1\right)}+\frac{1}{x+1}\right).\frac{x+1}{\sqrt{x}-1}\)ĐK x>=0 x khác -1

=\(\frac{\sqrt{x}+1}{x+1}.\frac{x+1}{\sqrt{x}-1}=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

b/ x =\(\frac{2+\sqrt{3}}{2}=\frac{4+2\sqrt{3}}{4}=\frac{3+2\sqrt{3}+1}{4}=\frac{\left(\sqrt{3}+1\right)^2}{4}\)

\(\Rightarrow\sqrt{x}=\frac{\sqrt{3}+1}{2}\)

Em thay vào tính nhé!

c) với x>1

A=\(\frac{\sqrt{x}+1}{\sqrt{x}-1}.\sqrt{x}=\frac{x+\sqrt{x}}{\sqrt{x}-1}=\sqrt{x}+2+\frac{2}{\sqrt{x}-1}=\sqrt{x}-1+\frac{2}{\sqrt{x}-1}+3\)

Áp dụng bất đẳng thức Cosi 

A\(\ge2\sqrt{2}+3\)

Xét dấu bằng xảy ra ....

27 tháng 11 2018

dấu bằng xảy ra khi nào v ạ ??

23 tháng 12 2020

a) Ta có: \(P=\left(\dfrac{1}{\sqrt{x}-\sqrt{x-1}}-\dfrac{x-3}{\sqrt{x-1}-\sqrt{2}}\right)\left(\dfrac{2}{\sqrt{2}-\sqrt{x}}-\dfrac{\sqrt{x}+\sqrt{2}}{\sqrt{2x}-x}\right)\)

\(=\left(\dfrac{\sqrt{x}+\sqrt{x-1}}{x-\left(x-1\right)}-\dfrac{\left(\sqrt{x-1}-\sqrt{2}\right)\left(\sqrt{x-1}+\sqrt{2}\right)}{\sqrt{x-1}-\sqrt{2}}\right)\cdot\left(\dfrac{2}{\sqrt{2}-\sqrt{x}}-\dfrac{\sqrt{x}+\sqrt{2}}{\sqrt{x}\left(\sqrt{2}-\sqrt{x}\right)}\right)\)

\(=\left(\sqrt{x}+\sqrt{x-1}-\sqrt{x-1}-\sqrt{2}\right)\cdot\left(\dfrac{2\sqrt{x}}{\sqrt{x}\left(\sqrt{2}-\sqrt{x}\right)}-\dfrac{\sqrt{x}+\sqrt{2}}{\sqrt{x}\left(\sqrt{2}-\sqrt{x}\right)}\right)\)

\(=\left(\sqrt{x}-\sqrt{2}\right)\cdot\dfrac{2\sqrt{x}-\sqrt{x}-\sqrt{2}}{-\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(=\left(\sqrt{x}-\sqrt{2}\right)\cdot\dfrac{\sqrt{x}-\sqrt{2}}{-\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(=\dfrac{\sqrt{2}-\sqrt{x}}{\sqrt{x}}\)

b) Ta có: \(x=3-2\sqrt{2}\)

\(=2-2\cdot\sqrt{2}\cdot1+1\)

\(=\left(\sqrt{2}-1\right)^2\)

Thay \(x=\left(\sqrt{2}-1\right)^2\) vào biểu thức \(P=\dfrac{\sqrt{2}-\sqrt{x}}{\sqrt{x}}\), ta được: 

\(P=\dfrac{\sqrt{2}-\sqrt{\left(\sqrt{2}-1\right)^2}}{\sqrt{\left(\sqrt{2}-1\right)^2}}\)

\(=\dfrac{\sqrt{2}-\left(\sqrt{2}-1\right)}{\sqrt{2}-1}\)

\(=\dfrac{\sqrt{2}-\sqrt{2}+1}{\sqrt{2}-1}\)

\(=\dfrac{1}{\sqrt{2}-1}\)

\(=\sqrt{2}+1\)

Vậy: Khi \(x=3-2\sqrt{2}\) thì \(P=\sqrt{2}+1\)

23 tháng 12 2020

cái x-3 ở tử phân tích kiểu j ra đc cái kia v bạn

 

27 tháng 11 2018

\(Q=\frac{\sqrt{x}\cdot\left(\sqrt{x}-1\right)\cdot\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\frac{\sqrt{x}\cdot\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\frac{2\left(\sqrt{x}-1\right)\cdot\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\)

\(Q=x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2\)

\(Q=x+1\)

Không thể tìm được GTLN hay GTNN của Q.

b)

   \(\frac{3x+3}{\sqrt{x}}=3\sqrt{x}+\frac{3}{\sqrt{x}}\)

Để \(\frac{3Q}{\sqrt{x}}\) nguyên thì \(\frac{3}{\sqrt{x}}\)nguyên hay \(\sqrt{x}\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

Vì \(\sqrt{x}\)dương nên \(\sqrt{x}\in\left\{1;3\right\}\)

Vậy x=1, x=9 là các giá trị cần tìm

5 tháng 1 2022

\(a,B=\dfrac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{1+\sqrt{x}}-\sqrt{x}\\ B=x-\sqrt{x}+1-\sqrt{x}=\left(\sqrt{x}-1\right)^2\)

Mà \(x=4-2\sqrt{3}=\left(\sqrt{3}-1\right)^2\)

\(\Rightarrow B=\left(\sqrt{3}-1-1\right)^2=\left(\sqrt{3}-2\right)^2=7-4\sqrt{3}\)

\(b,P=AB=\dfrac{2x+1-x+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\left(\sqrt{x}-1\right)^2\\ P=\dfrac{\left(x+\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{x+\sqrt{x}+1}=\sqrt{x}-1\\ c,Q=\sqrt{x}+\dfrac{1}{P}=\sqrt{x}+\dfrac{1}{\sqrt{x}-1}\\ Q=\sqrt{x}-1+\dfrac{1}{\sqrt{x}-1}+1\ge2\sqrt{1}+1=3\\ Q_{min}=3\Leftrightarrow\left(\sqrt{x}-1\right)^2=1\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}-1=1\\1-\sqrt{x}=1\end{matrix}\right.\Leftrightarrow\sqrt{x}=2\left(x>1\Leftrightarrow\right)x=4\left(tm\right)\)

a: \(B=\left(\sqrt{x}-1\right)^2=\left(\sqrt{3}-2\right)^2=7-4\sqrt{3}\)

b: \(A=\dfrac{2x+1-x+\sqrt{x}}{x\sqrt{x}-1}\cdot\left(\sqrt{x}-1\right)^2=\sqrt{x}-1\)

Sửa đề: \(P=\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}}{x-2\sqrt{x}+1}\)

a) Ta có: \(P=\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}}{x-2\sqrt{x}+1}\)

\(=\left(\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\dfrac{\sqrt{x}}{\left(\sqrt{x}-1\right)^2}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}}\)

\(=\dfrac{x-1}{x}\)

b) Sửa đề: \(2\sqrt{x+1}=5\)

Ta có: \(2\sqrt{x+1}=5\)

\(\Leftrightarrow\sqrt{x+1}=\dfrac{5}{2}\)

\(\Leftrightarrow x+1=\dfrac{25}{4}\)

hay \(x=\dfrac{21}{4}\)(thỏa ĐK)

Thay \(x=\dfrac{21}{4}\) vào biểu thức \(P=\dfrac{x-1}{x}\), ta được:

\(P=\left(\dfrac{21}{4}-1\right):\dfrac{21}{4}=\dfrac{17}{4}\cdot\dfrac{4}{21}=\dfrac{17}{21}\)

Vậy: Khi \(2\sqrt{x+1}=5\) thì \(P=\dfrac{17}{21}\)

c) Để \(P>\dfrac{1}{2}\) thì \(P-\dfrac{1}{2}>0\)

\(\Leftrightarrow\dfrac{x-1}{x}-\dfrac{1}{2}>0\)

\(\Leftrightarrow\dfrac{2\left(x-1\right)}{2x}-\dfrac{x-1}{2x}>0\)

mà \(2x>0\forall x\) thỏa mãn ĐKXĐ

nen \(2\left(x-1\right)-x+1>0\)

\(\Leftrightarrow2x-2-x+1>0\)

\(\Leftrightarrow x-1>0\)

hay x>1

Kết hợp ĐKXĐ, ta được: x>1

Vậy: Để \(P>\dfrac{1}{2}\) thì x>1

8 tháng 11 2023

a) \(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}+1}+\dfrac{\sqrt{x}-4}{x-1}\right)\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-2}\left(dkxd:x\ge0;x\ne1;x\ne4\right)\)

\(=\left[\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{\sqrt{x}-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right]\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-2}\)

\(=\dfrac{x-\sqrt{x}+\sqrt{x}-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-2}\)

\(=\dfrac{x-4}{\sqrt{x}-1}\cdot\dfrac{1}{\sqrt{x}-2}\)

\(=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\)

b) Với \(x\ge0;x\ne1;x\ne4\):

Thay \(x=3+2\sqrt{2}\) vào \(P\), ta được:

\(P=\dfrac{\sqrt{3+2\sqrt{2}}+2}{\sqrt{3+2\sqrt{2}}-1}\)

\(=\dfrac{\sqrt{\left(\sqrt{2}\right)^2+2\cdot\sqrt{2}\cdot1+1^2}+2}{\sqrt{\left(\sqrt{2}\right)^2+2\cdot\sqrt{2}\cdot1+1^2}-1}\)

\(=\dfrac{\sqrt{\left(\sqrt{2}+1\right)^2}+2}{\sqrt{\left(\sqrt{2}+1\right)^2}-1}\)

\(=\dfrac{\sqrt{2}+1+2}{\sqrt{2}+1-1}\)

\(=\dfrac{\sqrt{2}+3}{\sqrt{2}}\)

\(=\dfrac{2+3\sqrt{2}}{2}\)

c) Với \(x\ge0;x\ne1;x\ne4\),

\(P=\dfrac{\sqrt{x}+2}{\sqrt{x}-1}=\dfrac{\sqrt{x}-1+3}{\sqrt{x}-1}=1+\dfrac{3}{\sqrt{x}-1}\)

Để \(P\) có giá trị nguyên thì \(\dfrac{3}{\sqrt{x}-1}\) có giá trị nguyên

\(\Rightarrow 3\vdots\sqrt x-1\\\Rightarrow \sqrt x-1\in Ư(3)\)

\(\Rightarrow\sqrt{x}-1\in\left\{1;3;-1;-3\right\}\)

\(\Rightarrow\sqrt{x}\in\left\{2;4;0;-2\right\}\) mà \(\sqrt{x}\ge0\)

\(\Rightarrow\sqrt{x}\in\left\{2;4;0\right\}\)

\(\Rightarrow x\in\left\{4;16;0\right\}\)

Kết hợp với ĐKXĐ của \(x\), ta được:

\(x\in\left\{0;16\right\}\)

Vậy: ...

\(\text{#}Toru\)