Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C=\frac{6}{\left|x\right|-3}\)
Ta có:
\(6>0\)
\(\Rightarrow\frac{6}{\left|x\right|-3}\ge1\forall x\inℤ\)
\(\Rightarrow C\ge1\forall x\inℤ\)
Dấu "=" xảy ra:
\(\Leftrightarrow\left|x-3\right|=1\)
\(\Leftrightarrow\left|x\right|=4\)
\(\Leftrightarrow x=\pm4\)
Vậy C nhỏ nhất khi C = 1 tại x = \(\pm4\)
Chúc em học tốt nhé!
Lưu ý: |x| - 3 là mẫu số thì luôn luôn khác 0 nên có nhiều trường hợp nhé!
Bài 1 :
Vì \(\sqrt{3x+2y+z}\ge0\forall x;y;z\)
\(\left|y-\frac{1}{2}\right|\ge0\forall y\)
\(\left(z-2\right)^2\ge0\forall z\)
\(\Rightarrow A\ge2018\forall x;y;z\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}3x+2y+z=0\\y-\frac{1}{2}=0\\z-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}3x+2\cdot\frac{1}{2}+2=0\\y=\frac{1}{2}\\z=2\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\y=\frac{1}{2}\\z=2\end{cases}}}\)
Vậy........
Bài 2 :
Lý luận tương tự câu 1) ta có :
\(\hept{\begin{cases}x-1=0\\y+1=0\\x+y+z=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=-1\\1-1+z=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=-1\\z=0\end{cases}}}\)
Thay x; y; z vào P ta có :
\(P=1^{2018}+\left(-1\right)^{2019}+0^{2020}\)
\(P=1-1+0\)
\(P=0\)
Giải:
Ta có: B = \(\frac{5x-19}{x-4}=\frac{5\left(x-4\right)+1}{x-4}=5+\frac{1}{x-4}\)
Để B đạt giá trị lớn nhất <=> \(\frac{1}{x-4}\)đạt giá trị lớn nhất
<=> x - 4 đạt giá trị nhỏ nhất (x \(\ne\)4; x - 4 dương)
<=> x - 4 = 1 <=> x = 5
Với x = 5 => \(5+\frac{1}{5-4}=6\)
Vậy Max của B = 6 tại x = 5
Đặt:P = \(\frac{4-x}{x-2}=\frac{2+2-x}{x-2}=\frac{2}{x-2}-1\)
Ta có: P đạt giá trị lớn nhất khi và chỉ khi \(\frac{2}{x-2}\) đạt giá trị lớn nhất
+) Nếu : x - 2 < 0 => \(\frac{2}{x-2}< 0\)
+) Nếu x - 2> 0 => \(\frac{2}{x-2}>0\)
Nên \(\frac{2}{x-2}\)đạt giá trị lớn nhất khi x - 2 > 0 và x - 2 đạt giá trị bé nhất
=> x - 2 = 1 hay x = 3 ( thỏa mãn x khác 2)
Tại x = 3 ta có: P = 2 - 1 = 1
Vậy giá trị lớn nhất của biểu thức là P = 1 tại x = 3.
cô ơi đề bảo tìm gtnn cô ạ :(