\(\frac{4-x}{x-2}\)sao cho \(x\in Z\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2020

Đặt:P =  \(\frac{4-x}{x-2}=\frac{2+2-x}{x-2}=\frac{2}{x-2}-1\)

Ta có: P đạt giá trị lớn nhất khi và chỉ khi \(\frac{2}{x-2}\) đạt giá trị lớn nhất 

+) Nếu :  x - 2 < 0 => \(\frac{2}{x-2}< 0\)

+) Nếu x - 2> 0 => \(\frac{2}{x-2}>0\)

Nên \(\frac{2}{x-2}\)đạt giá trị lớn nhất khi x - 2 > 0  và x - 2 đạt giá trị bé nhất 

=> x - 2 = 1 hay x = 3  ( thỏa mãn x khác 2)

Tại x = 3 ta có: P = 2 - 1 = 1 

Vậy giá trị lớn nhất của biểu thức là P = 1 tại x = 3.

19 tháng 5 2020

cô ơi đề bảo tìm gtnn cô ạ :(

1 tháng 10 2019

\(C=\frac{6}{\left|x\right|-3}\)

Ta có:

\(6>0\)

\(\Rightarrow\frac{6}{\left|x\right|-3}\ge1\forall x\inℤ\)

\(\Rightarrow C\ge1\forall x\inℤ\)

Dấu "=" xảy ra:

\(\Leftrightarrow\left|x-3\right|=1\)

\(\Leftrightarrow\left|x\right|=4\)

\(\Leftrightarrow x=\pm4\)

Vậy C nhỏ nhất khi C = 1 tại x = \(\pm4\)

Chúc em học tốt nhé!

Lưu ý: |x| - 3 là mẫu số thì luôn luôn khác 0 nên có nhiều trường hợp nhé!

26 tháng 12 2018

Bài 1 :

Vì \(\sqrt{3x+2y+z}\ge0\forall x;y;z\)

\(\left|y-\frac{1}{2}\right|\ge0\forall y\)

\(\left(z-2\right)^2\ge0\forall z\)

\(\Rightarrow A\ge2018\forall x;y;z\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}3x+2y+z=0\\y-\frac{1}{2}=0\\z-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}3x+2\cdot\frac{1}{2}+2=0\\y=\frac{1}{2}\\z=2\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\y=\frac{1}{2}\\z=2\end{cases}}}\)

Vậy........

26 tháng 12 2018

Bài 2 :

Lý luận tương tự câu 1) ta có :

\(\hept{\begin{cases}x-1=0\\y+1=0\\x+y+z=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=-1\\1-1+z=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=-1\\z=0\end{cases}}}\)

Thay x; y; z vào P ta có :

\(P=1^{2018}+\left(-1\right)^{2019}+0^{2020}\)

\(P=1-1+0\)

\(P=0\)

13 tháng 7 2019

Giải: 

Ta có: B = \(\frac{5x-19}{x-4}=\frac{5\left(x-4\right)+1}{x-4}=5+\frac{1}{x-4}\)

Để B đạt giá trị lớn nhất <=> \(\frac{1}{x-4}\)đạt giá trị lớn nhất

<=>  x - 4 đạt giá trị nhỏ nhất (x \(\ne\)4; x - 4 dương)

<=> x - 4 = 1 <=> x = 5

Với x = 5 => \(5+\frac{1}{5-4}=6\)

Vậy Max của B = 6 tại x = 5