Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa lại đề bài: 1 / 2a- b
( MÁY MK KO ĐÁNH ĐC PHÂN SỐ MONG BN THÔNG CẢM)
mới lm đc nhé bn!
a) ĐKXĐ: bn tự lm nhé !
bn biến đổi: 2a3-b+2a-a2b = (2a-b) + ( 2a3-a2b) = (2a-b) + a2(2a-b) = (2a-b)(a2+1)
rồi bn nhân 1 / 2a+b với a2+1 rồi trừ 2 phân thức với nhau sẽ ra 0 => A=0
Lời giải:
Áp dụng BĐT Cauchy-Schwarz:
\(B=\frac{1}{(a+2b)(a+2c)}+\frac{1}{(b+2a)(b+2c)}+\frac{1}{(c+2a)(c+2b)}\)
\(\geq \frac{9}{(a+2b)(a+2c)+(b+2a)(b+2c)+(c+2a)(c+2b)}\)
\(\Leftrightarrow B\geq \frac{9}{(a^2+2ac+2ab+4bc)+(b^2+2bc+2ab+4ac)+(c^2+2bc+2ac+4ab)}\)
\(\Leftrightarrow B\geq \frac{9}{a^2+b^2+c^2+8(ab+bc+ac)}=\frac{9}{(a+b+c)^2+6(ab+bc+ac)}(*)\)
Theo hệ quả quen thuộc của BĐT Cô-si:
\(a^2+b^2+c^2\geq ab+bc+ac\)
\(\Rightarrow (a+b+c)^2\geq 3(ab+bc+ac)\)
\(\Rightarrow 2(a+b+c)^2\geq 6(ab+bc+ac)(**)\)
Từ \((*); (**)\Rightarrow B\geq \frac{9}{(a+b+c)^2+2(a+b+c)^2}=\frac{3}{(a+b+c)^2}\geq \frac{3}{3^2}=\frac{1}{3}\)
(do \(a+b+c\leq 3)\)
Do đó: \(B_{\min}=\frac{1}{3}\)
Dấu bằng xảy ra khi \(a=b=c=1\)
áp dụng BĐT cô si dạng engel cho 3 số dương, ta có:
\(\dfrac{\left(2b+3c\right)^2}{a}+\dfrac{\left(2c+3a\right)^2}{b}+\dfrac{\left(2a+3b\right)^2}{c}\ge\dfrac{\left(5a+5b+5c\right)^2}{a+b+c}=\dfrac{25\left(a+b+c\right)^2}{a+b+c}=25\left(a+b+c\right)\left(đpcm\right)\)
Lời giải:
Xét
\((a+b+c)(a^2+b^2+c^2)=(a^3+b^3+c^3+ab^2+bc^2+ca^2)+a^2b+b^2c+c^2a\)
Áp dụng BĐT AM-GM:
\(\left\{\begin{matrix} a^3+ab^2\geq 2a^2b\\ b^3+bc^2\geq 2b^2c\\ c^3+ca^2\geq 2c^2a\end{matrix}\right.\) \(\Rightarrow (a+b+c)(a^2+b^2+c^2)\geq 3(a^2b+b^2c+c^2a)\)
\(\Leftrightarrow a^2b+b^2c+c^2a\leq \frac{a^2+b^2+c^2}{3}\) (do \(a+b+c=1\))
Do đó, \(A\geq 14(a^2+b^2+c^2)+\frac{3(ab+bc+ac)}{a^2+b^2+c^2}\)
\(\Leftrightarrow A\geq 14[(a+b+c)^2-2(ab+bc+ac)]+\frac{3(ab+bc+ac)}{(a+b+c)^2-2(ab+bc+ac)}\)
\(\Leftrightarrow A\geq 14-28(ab+bc+ac)+\frac{3(ab+bc+ac)}{1-2(ab+bc+ac)}\)
Đặt \(ab+bc+ac=t\)
Theo AM-GM thì \(ab+bc+ac\leq\frac{(a+b+c)^2}{3}\Leftrightarrow t\leq \frac{1}{3}\Rightarrow t\in (0,\frac{1}{3}]\)
Ta có: \(A\geq 14-28t+\frac{3t}{1-2t}\)
Ta sẽ cm rằng \(14-28t+\frac{3t}{1-2t}\geq \frac{23}{3}\Leftrightarrow \frac{14(1-2t)^2+3t}{1-2t}\geq \frac{23}{3}\)
\(\Leftrightarrow 168t^2-159t+42\geq 23-46t\)
\(\Leftrightarrow (3t-1)(56t-19)\geq 0\) \((\star)\)
Vì \(t\leq \frac{1}{3}\Rightarrow 3t-1,56t-19\leq 0\Rightarrow (3t-1)(56t-19)\geq 0\)
Do đó \((\star)\) đúng kéo theo \(14-28t+\frac{3t}{1-2t}\geq \frac{23}{3}\Rightarrow A\geq \frac{23}{3}\)
Vậy \(A_{\min}=\frac{23}{3}\Leftrightarrow a=b=c=\frac{1}{3}\)