Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(\left\{{}\begin{matrix}-1\le x\le1\\x\ne0\end{matrix}\right.\)
\(A=\frac{\sqrt{1+x}}{\sqrt{1+x}-\sqrt{1-x}}+\frac{\sqrt{1-x}^2}{\sqrt{1-x}\left(\sqrt{1+x}-\sqrt{1-x}\right)}-\frac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x}+\sqrt{1-x}}\)
\(=\frac{\sqrt{1+x}+\sqrt{1-x}}{\sqrt{1+x}-\sqrt{1-x}}-\frac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x}+\sqrt{1-x}}\)
\(=\frac{1+x+1-x+2\sqrt{1-x^2}-\left(1+x+1-x-2\sqrt{1-x^2}\right)}{2x}\)
\(=\frac{2\sqrt{1-x^2}}{x}\)
\(\sqrt{1-x^2}=\sqrt{1-\frac{4+2\sqrt{3}}{8}}=\sqrt{\frac{4-2\sqrt{3}}{8}}=\frac{\sqrt{3}-1}{2\sqrt{2}}\)
\(\Rightarrow A=\frac{\sqrt{3}-1}{\sqrt{2}}.\frac{2\sqrt{2}}{\sqrt{3}+1}=\frac{2\left(\sqrt{3}-1\right)^2}{2}=4-2\sqrt{3}\)
a. ĐK \(x\ge0\)và \(x\ne1\)
A =\(\left(\frac{\sqrt{x}+1}{\sqrt{x}-1}+\frac{\sqrt{x}}{\sqrt{x}+1}+\frac{\sqrt{x}}{1-\sqrt{x}}\right):\left(\frac{\sqrt{x}+1}{\sqrt{x}-1}+\frac{1-\sqrt{x}}{\sqrt{x}+1}\right)\)
\(=\frac{\left(\sqrt{x}+1\right)^2+\sqrt{x}\left(\sqrt{x}-1\right)-\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}:\frac{\cdot\left(\sqrt{x}+1\right)^2+\left(\sqrt{x}-1\right)\left(1-\sqrt{x}\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{x+2\sqrt{x}+1+x-\sqrt{x}-x-\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}.\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{x+2\sqrt{x}+1+\sqrt{x}-x-1+\sqrt{x}}\)
\(=\frac{x+1}{4\sqrt{x}}\)
b. Thay \(x=\frac{2-\sqrt{3}}{2}\Rightarrow A=\frac{\frac{2-\sqrt{3}}{2}+1}{4\sqrt{\frac{2-\sqrt{3}}{2}}}=\frac{4-\sqrt{3}}{4\left(\sqrt{3}-1\right)}=\frac{4-\sqrt{3}}{4-4\sqrt{3}}=-\frac{1+3\sqrt{3}}{8}\)
c . Ta có \(A-\frac{1}{2}=\frac{x+1}{4\sqrt{x}}-\frac{1}{2}=\frac{x-2\sqrt{x}+1}{4\sqrt{x}}=\frac{\left(\sqrt{x}-1\right)^2}{4\sqrt{x}}>0\)với \(\forall x>0\)và \(x\ne1\)
Vậy A >1/2
a) ĐK: x > 1
\(P=\left(\frac{\sqrt{x-1}}{3+\sqrt{x-1}}+\frac{x+8}{9-\left(x-1\right)}\right):\left(\frac{3\sqrt{x-1}+1}{\left(x-1\right)-3\sqrt{x-1}}-\frac{1}{\sqrt{x-1}}\right)\)
\(P=\frac{\sqrt{x-1}\left(3-\sqrt{x-1}\right)+x+8}{9-\left(x-1\right)}:\frac{3\sqrt{x-1}+1-\left(\sqrt{x-1}-3\right)}{\sqrt{x-1}\left(\sqrt{x-1}-3\right)}\)
\(P=\frac{3\sqrt{x-1}-x+1+x+8}{10-x}:\frac{2\sqrt{x-1}+4}{\sqrt{x-1}\left(\sqrt{x-1}-3\right)}\)
\(P=\frac{3\left(\sqrt{x-1}+3\right)}{10-x}.\frac{\sqrt{x-1}\left(\sqrt{x-1}-3\right)}{2\sqrt{x-1}+4}\)
\(P=\frac{-3\sqrt{x-1}}{2\sqrt{x-1}+4}\)
b) \(x=\sqrt[4]{\frac{17+12\sqrt{2}}{1}}-\sqrt[4]{\frac{17-12\sqrt{2}}{1}}=1+\sqrt{2}-\left(\sqrt{2}-1\right)=2\)
Vậy \(P=\frac{-3\sqrt{2-1}}{2\sqrt{2-1}+4}=-\frac{1}{2}\)
cô Hoàng Thị Thu Huyền làm rõ cho em ý b đc ko ạ chỗ biến đổi x
a/ \(A=\left(\frac{2\sqrt{x}+x}{\sqrt{x}^3-1}-\frac{1}{\sqrt{x}-1}\right):\frac{\sqrt{x}+2}{x+\sqrt{x}+1}\)
\(=\left[\frac{2\sqrt{x}+x}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\frac{1}{\sqrt{x}-1}\right]:\frac{\sqrt{x}+2}{x+\sqrt{x}+1}\)
\(=\frac{2\sqrt{x}+x-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\frac{x+\sqrt{x}+1}{\sqrt{x}+2}\)
\(=\frac{\sqrt{x}-1}{\sqrt{x}-1}.\frac{1}{\sqrt{x}+2}=\frac{1}{\sqrt{x}+2}\)
b/ Thay \(x=4+2\sqrt{3}\) vào A ta được:
\(A=\frac{1}{\sqrt{4+2\sqrt{3}}+2}=\frac{1}{\sqrt{\left(\sqrt{3}+1\right)^2}+2}=\frac{1}{\sqrt{3}+3}\)
\(\Rightarrow\sqrt{A}=\frac{1}{\sqrt{\sqrt{3}+3}}\)