Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1,
\(A=\left(\frac{a\sqrt{a}-1}{a-\sqrt{a}}-\frac{a\sqrt{a}+1}{a+\sqrt{a}}\right):\frac{a+2}{a-2}\left(đk:a\ne0;1;2;a\ge0\right)\)
\(=\frac{\left(a\sqrt{a}-1\right)\left(a+\sqrt{a}\right)-\left(a\sqrt{a}+1\right)\left(a-\sqrt{a}\right)}{a^2-a}.\frac{a-2}{a+2}\)
\(=\frac{a^2\sqrt{a}+a^2-a-\sqrt{a}-\left(a^2\sqrt{a}-a^2+a-\sqrt{a}\right)}{a\left(a-1\right)}.\frac{a-2}{a+2}\)
\(=\frac{2a\left(a-1\right)\left(a-2\right)}{a\left(a-1\right)\left(a+2\right)}=\frac{2\left(a-2\right)}{a+2}\)
Để \(A=1\)\(=>\frac{2a-4}{a+2}=1< =>2a-4-a-2=0< =>a=6\)
2,
a, Điều kiện xác định của phương trình là \(x\ne4;x\ge0\)
b, Ta có : \(B=\frac{2\sqrt{x}}{x-4}+\frac{1}{\sqrt{x}-2}-\frac{1}{\sqrt{x}+2}\)
\(=\frac{2\sqrt{x}}{x-4}+\frac{\sqrt{x}+2}{x-4}-\frac{\sqrt{x}-2}{x-4}\)
\(=\frac{2\sqrt{x}+2+2}{x-4}=\frac{2\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{2}{\sqrt{x}-2}\)
c, Với \(x=3+2\sqrt{3}\)thì \(B=\frac{2}{3-2+2\sqrt{3}}=\frac{2}{1+2\sqrt{3}}\)
\(\left(\sqrt{a}+\frac{b-\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\right)\div\left(\frac{a}{\sqrt{ab}+b}+\frac{b}{\sqrt{ab}-a}-\frac{a+b}{\sqrt{ab}}\right)\)
\(=\left(\frac{\sqrt{a}.\left(\sqrt{a}+\sqrt{b}\right)+b-\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\right):\left(\frac{a}{\sqrt{b}\left(\sqrt{a}+\sqrt{b}\right)}+\frac{b}{\sqrt{a}\left(\sqrt{b}-\sqrt{a}\right)}-\frac{a+b}{\sqrt{ab}}\right)\)
\(=\left(\frac{a+\sqrt{ab}+b-\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\right):\left(\frac{a.\sqrt{a}.\left(\sqrt{b}-\sqrt{a}\right)+b.\sqrt{b}.\left(\sqrt{a}+\sqrt{b}\right)-\left(a+b\right).\left(b-a\right)}{\sqrt{ab}.\left(b-a\right)}\right)\)
\(=\left(\frac{a+b}{\sqrt{a}+\sqrt{b}}\right):\left(\frac{a\sqrt{ab}-a^2+b\sqrt{ab}+b^2-b^2+a^2}{\sqrt{ab}.\left(b-a\right)}\right)\)
giải tiếp
\(=\left(\frac{a+b}{\sqrt{a}+\sqrt{b}}\right):\left(\frac{a\sqrt{ab}+b\sqrt{ab}}{\sqrt{ab}\left(b-a\right)}\right)\)
\(=\left(\frac{a+b}{\sqrt{a}+\sqrt{b}}\right):\left(\frac{\sqrt{ab}.\left(a+b\right)}{\sqrt{ab}.\left(b-a\right)}\right)=\left(\frac{a+b}{\sqrt{a}+\sqrt{b}}\right).\left(\frac{b-a}{a+b}\right)\)
\(=\frac{b-a}{\sqrt{a}+\sqrt{b}}=\frac{\left(b-a\right)\left(\sqrt{a}-\sqrt{b}\right)}{a-b}=\frac{b\sqrt{a}-b\sqrt{b}-a\sqrt{a}+a\sqrt{b}}{a-b}\)
a) ĐK: a > 0; b > 0
\(A=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2+4\sqrt{ab}}{\sqrt{a}+\sqrt{b}}-\frac{a\sqrt{b}-b\sqrt{a}}{\sqrt{ab}}-b\)
\(=\frac{\sqrt{a}+\sqrt{b}+2\sqrt{ab}}{\sqrt{a}+\sqrt{b}}-\frac{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{ab}}-b\)
\(=\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{\sqrt{a}+\sqrt{b}}-\left(\sqrt{a}-\sqrt{b}\right)-b\)
\(=\sqrt{a}+\sqrt{b}-\sqrt{a}+\sqrt{b}-b\)
\(=2\sqrt{b}-b\)
b) \(A=1\)\(\Rightarrow\)\(2\sqrt{b}-b=1\)
\(\Leftrightarrow\)\(b-2\sqrt{b}+1=0\)
\(\Leftrightarrow\) \(\left(\sqrt{b}-1\right)^2=0\)
\(\Leftrightarrow\)\(\sqrt{b}-1=0\)
\(\Leftrightarrow\)\(\sqrt{b}=1\)
\(\Leftrightarrow\)\(b=1\) (t/m ĐKXĐ)
Vậy b=1
Lời giải:
a)
ĐK: \(a,b>0; a\neq b\)
b)
\(A=\frac{(\sqrt{a}+\sqrt{b})^2-4\sqrt{ab}}{\sqrt{a}-\sqrt{b}}-\frac{a\sqrt{b}+b\sqrt{a}}{\sqrt{ab}}=\frac{a+2\sqrt{ab}+b-4\sqrt{ab}}{\sqrt{a}-\sqrt{b}}-\frac{\sqrt{ab}(\sqrt{a}+\sqrt{b})}{\sqrt{ab}}\)
\(=\frac{a-2\sqrt{ab}+b}{\sqrt{a}-\sqrt{b}}-(\sqrt{a}+\sqrt{b})\)
\(=\frac{(\sqrt{a}-\sqrt{b})^2}{\sqrt{a}-\sqrt{b}}-(\sqrt{a}+\sqrt{b})=(\sqrt{a}-\sqrt{b})-(\sqrt{a}+\sqrt{b})=-2\sqrt{b}\)