Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}\)
\(A=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}\)
\(A=\frac{a^2+a-1}{a^2+a+1}\)\(\left(a\ne-1\right)\)
b)Gọi d là ước chung lớn nhất của a2 +a-1 và a2+a+1
Vì a2 +a-1=a(a+1)-1 là lẻ nên d cũng là số lẻ.
Tự làm tiếp nhé,đến đây chắc bạn làm đc chứ,hok tốt!
\(A=\frac{a^2+a-1}{a^2+a+1}\)
Vì: \(a^2+a=a\left(a+1\right)\)
a là số nguyên
=> a, a+1 là 2 số nguyên liên tiếp
=> a.(a+1) là số chẵn
=> \(a^2+a+1,a^2+a-1\)là 2 số nguyên lẻ liên tiếp
Mà 2 số lẻ liên tiếp nguyên tố cùng nhau
(chúng minh: (2k+1, 2k+3)=d
=> 2k+1 chia hết cho d, 2k+3 chia hết cho d
=> 2k+3-(2k+1)=2 chia hết cho d
=> d=\(2\)hoặc d=\(1\)
Nếu d=\(2\)=> 2k+1 chia hêt cho 2 vô lí
=> d=\(1\))
=> (\(a^2+a+1,a^2+a-1\))=1
Vậy A là phân số tối giản
Máy mik bị lag chữ a, mik thay bằng chữ x nha
a/
\(\frac{x^3+2x^2-1}{x^3+2x^2+2x+1}=\frac{x^3+x^2+x^2-1}{x^3+1+2x\left[x+1\right]}\)
\(=\frac{\left[x^3-x^2\right]+\left[x^2-x\right]+\left[x-1\right]}{\left[x^3+x^2\right]-\left[x^2+x\right]+\left[x+1\right]+2x\left[x+1\right]}\)
\(=\frac{x^2\left[x-1\right]+x\left[x-1\right]+\left[x-1\right]}{x^2\left[x+1\right]-x\left[x+1\right]+\left[x+1\right]+2x\left[x+1\right]}\)
\(=\frac{x^2\left[x+1\right]+\left[x-1\right]\left[x+1\right]}{\left[x^2-x+1+2x\right]\left[x+1\right]}\)
\(=\frac{\left[x+1\right]\left[x^2+x-1\right]}{\left[x+1\right]\left[x^2+x+1\right]}=\frac{x^2+x-1}{x^2+x+1}\)
x khác -1 bạn nhé [ví x = -1 thí ps k có giá trị]
b/
Gọi d là \(UCLN\left[x^2+x-1;x^2+x+1\right]\)
Mà \(x^2+x-1=x\left[x+1\right]-1lẻ⋮d\Rightarrow dlẻ\)
Mặt khác: \(x^2+x+1-\left[x^2+x-1\right]=2⋮d\)
=> d = 1
=> Phân số \(\frac{x^2+x-1}{x^2+x+1}\)
Tối giản khi x nguyên
Pạn thay x thành a giùm, cảm ơn
Ta có: =
Điều kiện đúng a ≠ -1 ( 0,25 điểm).
Rút gọn đúng cho 0,75 điểm.
b.Gọi d là ước chung lớn nhất của a2 + a – 1 và a2+a +1
Vì a2 + a – 1 = a(a+1) – 1 là số lẻ nên d là số lẻ
Mặt khác, 2 = [ a2+a +1 – (a2 + a – 1) ] d
Nên d = 1 tức là a2 + a + 1 và a2 + a – 1 nguyên tố cùng nhau.
Vậy biểu thức A là phân số tối giản.
Giải \(A=\frac{a^3+2a^2-1}{a^3+2a^22a+1}\) \(A=\frac{\left(a^3+a^2\right)+\left(a^2-1\right)}{\left(a^3+a^2\right)+\left(a^2+a\right)+\left(a+1\right)}\) \(A=\frac{a^2\left(a+1\right)\left(a+1\right)\left(a+1\right)}{a^2\left(a+1\right)+a\left(a+1\right)+\left(a+1\right)}\) \(A=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2 +a+1\right)}\) \(A=\frac{a^2+a-1}{a^2+a+1}\) b, Gọi d là ƯCLN \(\left(a^2+a-1;a^2+a+1\right)\) \(\Rightarrow\)\(a^2+a-1⋮d\) \(a^2+a+1⋮d\) \(\Rightarrow\left(a^2+a+1\right)-\left(a^2+a-1\right)⋮d\) \(\Rightarrow2⋮d\) \(\Rightarrow d=1\) hoặc d=2 Nhận xét : \(a^2+a-1=a\left(a+1\right)-1\) Với số nguyên a ta có :a(a+1) là tích 2 số nguyên liên tiếp \(\Rightarrow a\left(a+1\right)⋮2\) \(\Rightarrow a\left(a+1\right)-1\) lẻ \(\Rightarrow a^2+a-1\) lẻ \(\Rightarrow\) d không thể bằng 2 Vậy d=1 (đpcm)
\(\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}=\frac{\left(a^3+a^2\right)+\left(a^2-1\right)}{\left(a^3+1\right)+\left(2a^2+2a\right)}=\frac{a^2\left(a+1\right)+\left(a+1\right)\left(a-1\right)}{\left(a+1\right)\left(a^2-a+1\right)+2a\left(a+1\right)}\)
\(=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2-a+1+2a\right)}=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}=\frac{a^2+a-1}{a^2+a+1}\)
b) gọi d là UWCLN của a^2 +a +1 và a^2 + a -1
ta có a^2 + a -1 = a(a+1) - 1 là số lẻ nên d à số lẻ
mawth khác( a^2 + a +1) - (a^2+a-1) = 2 chia hết cho d nên d =1 hay a^2+a-1 và a^2+a+1 là 2 số nguyên tố cùng nhau
vậy A là phân số tối giản