Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S = \(\left(1+3\right)+\left(3^2+3^3\right)+\left(3^4+3^5\right)+...+\left(3^{48}+3^{49}\right)\)
= \(4+3^2.\left(1+3\right)+3^4.\left(1+3\right)+...+3^{48}.\left(1+3\right)\)
= \(4+3^2.4+3^4.4+...+3^{48}.4\)
= \(4.\left(1+3^2+3^4+...+3^{48}\right)\text{ chia hết cho 4}\)
=> S chia hết cho 4 (đpcm).
b. Chưa rõ.
c. S = \(1+3+3^2+3^3+...+3^{49}\)
=> 3S = \(3.\left(1+3+3^2+3^3+...+3^{49}\right)\)
=> 3S = \(3+3^2+3^3+3^4+...+3^{50}\)
=> 3S - S = \(\left(3+3^2+3^3+3^4+...+3^{50}\right)-\left(1+3+3^2+3^3+...+3^{49}\right)\)
=> 2S = \(3^{50}-1\)
=> S = \(\frac{3^{50}-1}{2}\left(\text{đpcm}\right)\).
minh hiền bạn làm đúng rùi mong bạn sớm làm được phần b chúc học giỏ
\(S=1+3+3^2+...+3^{2019}\)
\(3S=3+3^2+3^3+...+3^{2020}\)
\(3S-S=\left(3+3^2+3^3+...+3^{2020}\right)-\left(1+3+3^2+...+3^{2019}\right)\)
\(2S=3^{2020}-1\)
Ta có S.3=3+32+33+...+32020
S.3-S=(3+32+33+...+32020)-(1+3+...+32019)
S.2= 32020-1
b)Biết S.2= 32020-1
suy ra s=(32020-1):2
chữ số tận cùng của S là [(34)505-1]:2
= [ (...1)-1]:2
= (...0):2
=0
Vậy chữ số hàng đơn vị của S là 0
a/ Ta có :
\(S=1+3+3^2+........+3^{2017}\)
\(\Leftrightarrow S=\left(1+3\right)+\left(3^2+3^3\right)+......+\left(3^{2016}+3^{2017}\right)\)
\(\Leftrightarrow S=1\left(1+3\right)+3^2\left(1+3\right)+......+3^{2016}\left(1+3\right)\)
\(\Leftrightarrow S=1.4+3^2.4+........+3^{2016}.4\)
\(\Leftrightarrow S=4\left(1+3^2+......+3^{2016}\right)⋮4\left(đpcm\right)\)
b/ \(S=1+3+..........+3^{2017}\)
\(\Leftrightarrow3S=3+3^2+.........+3^{2017}+3^{2018}\)
\(\Leftrightarrow3S-S=\left(3+3^2+..........+3^{2018}\right)-\left(1+3+.....+3^{2017}\right)\)
\(\Leftrightarrow2S=3^{2018}-1\)
\(\Leftrightarrow S=\dfrac{3^{2018}-1}{2}\)
giải dài lắm bạn ơi,mik làm câu b thui nhé
S = 1 + 3 + 3 ^ 2 + 3 ^ 3 + ... + 3 ^ 202 + 3 ^ 203
S x 3 = ( 1 + 3 + 3 ^ 2 + 3 ^ 3 + ... + 3 ^ 202 + 3 ^ 203 ) x 3
Sx 3 = 3 + 3 ^ 2 + 3 ^ 3 + 3 ^ 4 + ... + 3 ^ 203 + 3 ^ 204
S x 3 = ( 1 + 3 + 3 ^ 2 + 3 ^ 3 + ... + 3 ^ 202 + 3 ^ 203 ) + 3 ^ 204 - 1
S x3 = S + 3 ^ 204 - 1
S x 2 = 3 ^ 204 - 1 ( cũng bớt cả 2 vế đi S )
S = 3 ^ 204 - 1 : 2
S = 3 ^ 4 x 51 - 1 : 2
S = (3^4) ^ 51 - 1 : 2
S = 81 ^ 51 - 1 : 2
Vì 81 ^ 51 luôn có t/c = 1 ( do số có t/c =1 khi nâng lên bất kì lũy thừa nào đều có t/c = 1)
=> 81 ^ 51 - 1 co t/c = 0
=> 81 ^ 51 - 1 : 2 co t/c = 5
Hay S có t/c = 5
Vay S co t/c =5
Ung ho nha
Ta có :
S = 1 + 3 + 32 + 33 + 34 + 35 + 36 + 37 + 38 + 39 + 310 + 311
S = (1 + 3 + 32) + (33 + 34 + 35 ) + (36 + 37 + 38 ) + (39 + 310 + 311)
S = 1 . (1 + 3 + 32 ) + 33 . (1 + 3 + 32) + 36 . (1 + 3 + 32) + 39 . (1 + 3 + 32)
S = 1 . 13 + 33 . 13 + 36 . 13 + 39 . 13
S = 13 . (1 + 33 + 36 + 39) chia hết cho 13 nên S chia hết cho 13 (ĐPCM)
S = 1 + 3 + 32 + 33 + 34 + 35 + 36 + 37 + 38 + 39 + 310 + 311
S = (1 + 3 + 32 + 33) + (34 + 35 + 36 + 37) + (38 + 39 + 310 + 311)
S = 1.(1 + 3 + 32 + 33) + 34 . (1 + 3 + 32 + 33) + 38 . (1 + 3 + 32 + 33)
S = 1 . 40 + 34 . 40 + 38 .40
S = 40 . (1 + 34 + 38) chia hết cho 40 (ĐPCM)
Ủng hộ mk nha !!! ^_^
a) Nhân S với 32 bằng S nhân với 9 ta được : 9S
9S = 32 + 34 + 36 + ... + 32002 + 32004
\(\Rightarrow\)9S - S = ( 32 + 34 + 36 + ... + 32004 ) - ( 30 + 32 + 36 + ... + 32002 )
\(\Rightarrow\)8S = 32004 - 1
\(\Rightarrow\)S = \(\frac{\left(3^{2004}-1\right)}{8}\)
b) Ta có s là số nguyên nê phài chứng minh 32004 - 1 chia hết cho 7
Ta có : 32004 - 1 = ( 36 )334 - 1 = ( 36 ) . M = 728 . M = 7 . 104 . M
\(\Rightarrow\)32004 chia hết cho 7. Mặt khác ( 7;8 ) = 1
\(\Rightarrow\)S chia hết cho 7
Lời giải:
$S=3^0+3^2+3^4+...+3^{2014}$
$3^2S=3^2+3^4+3^6+...+3^{2016}$
$\Rightarrow 3^2S-S=3^{2016}-3^0$
$\Rightarrow 8S=3^{2016}-1$
$\Rightarrow S=\frac{3^{2016}-1}{8}$
b.
$S=(3^0+3^2+3^4)+(3^6+3^8+3^{10})+....+(3^{2010}+3^{2012}+3^{2014})$
$=(1+3^2+3^4)+3^6(1+3^2+3^4)+...+3^{2010}(1+3^2+3^4)$
$=(1+3^2+3^4)(1+3^6+...+3^{2010})=91(1+3^6+...+3^{2010})$
$=7.13(1+3^6+...+3^{2010})\vdots 7$.
a) S=(2+22)+22(2+22)+24(2+22)+.....+298(2+22)
S=(2+22)(1+22+24+....+298)
s=6(1+22+24+....+298)
Vi 6 chia het cho 3.Suyra S chia het cho 3
Moi cac ban xem tiep phan sau vao ngay mai
a. S=2+2^2+2^3+2^4+...+2^100
= 2.(1+2)+2^3.(1+2)+2^5.(1+2)+....+2^99(1+2)
=2.3+2^3.3+2^5.3+...+2^99.3
=3.(2+2^2+2^5+...+2^99)
=> 3 chia hết cho 3
b. S=2+2^2+2^3+2^4+...+2^100
= 2.(1+2+4+8)+2^5.(1+2+4+8)+2^9(1+2+4+8)+...+2^96.(1+2+4+8)
=2.15+2^5.15+2^9.15+...+2^96.15
=> S chia hết cho 15
a)
\(3S=3^2+3^3+...+3^{81}\)
\(3S-S=\left(3^2+3^3+...+3^{81}\right)-\left(3+3^2+...+3^{80}\right)\)
\(2S=3^{81}-3\)
\(S=\dfrac{3^{81}-3}{2}\)
b) sai đề?
c)
\(S=\left(3^1+3^2+...+3^4\right)+\left(3^5+3^6+...+3^8\right)+...+\left(3^{77}+3^{78}+3^{79}+3^{80}\right)\)
\(S=3^1\left(1+3+9+27\right)+3^5\left(1+3+9+27\right)+...+3^{77}\left(1+3+9+27\right)\)
\(S=\left(3^1+3^5+...+3^{77}\right)\cdot40\)
Do đó S chia hết cho 40
a) S = 3¹ + 3² + 3³ + ... + 3⁷⁹ + 3⁸⁰
⇒ 3S = 3² + 3³ + 3⁴ + ... + 3⁸⁰ + 3⁸¹
⇒ 2S = 3S - S
= (3² + 3³ + 3⁴ + ... + 3⁸⁰ + 3⁸¹) - (3¹ + 3² + 3³ + ... + 3⁷⁹ + 3⁸⁰)
= 3⁸¹ - 3
⇒ S = (3⁸¹ - 3)/2
b) S = 3¹ + 3² + 3³ + ... + 3⁷⁹ + 3⁸⁰
= (3 + 3² + 3³ + 3⁴ + 3⁵) + (3⁶ + 3⁷ + 3⁸ + 3⁹ + 3¹⁰) + ... + 3⁷⁶ + 3⁷⁷ + 3⁷⁸ + 3⁷⁹ + 3⁸⁰)
= 3(1 + 3 + 3² + 3³ + 3⁴) + 3⁶(1 + 3 + 3² + 3³ + 3⁴) + ... + 3⁷⁶(1 + 3 + 3² + 3³ + 3⁴)
= 3.121 + 3⁶.121 + ... + 3⁷⁶.121
= 121.(3 + 3⁶ + ... + 3⁷⁶)
= 11.11(3 + 3⁶ + ... + 3⁷⁶) ⋮ 11
Vậy S ⋮ 11
c) S = 3¹ + 3² + 3³ + ... + 3⁷⁹ + 3⁸⁰
= (3 + 3² + 3³ + 3⁴) + (3⁵ + 3⁶ + 3⁷ + 3⁸) + ... + (3⁷⁷ + 3⁷⁸ + 3⁷⁹ + 3⁸⁰)
= 3(1 + 3 + 3² + 3³) + 3⁵(1 + 3 + 3² + 3³) + ... + 3⁷⁷(1 + 3 + 3² + 3³)
= 3.40 + 3⁵.40 + ... + 3⁷⁷.40
= 40(3 + 3⁵ + ... + 3⁷⁷) ⋮ 40
Vậy S ⋮ 40