Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề bài, ta có: (x^2+2020)(x-10)=0
Vì x^2 luôn lớn hơn hoặc bằng 0 nên x^2+2020>0
=> x-10=0
Khi đó P=(x^2-1)(x^2-2)...(x^2-100)(x^2-101)...(x^2-2020)
=> P=(10^2-1)(10^2-2)...(10^2-100)(10^2-101)...(10^2-2020)
=> P=0 < Vì 10^2-100=0>
Vậy P=0
Nhận xét : ( x + y - 3 )^2018 >=0 và 2018.(2x-4)^2020 >= 0
=> (x+y-3)^2018 + 2018.(2x-4)^2020 >=0
Dấu = xảy ra khi : x + y - 3 = 0 và 2x - 4 = 0 => x = 2 và y = 1
Thay vào bt S :
S = ( 2 - 1)^2019 + (2-1)^2019
= 1^2019 + 1^2019 = 2
Bài làm:
\(\left|x-2\right|=0\Rightarrow x=2\)
Khi đó: \(A=2^2-2.2+2020=2020\)
Tính x \(|x-2|=0\Rightarrow x=0+2=2\) ( Vì bằng 0 nên chỉ có 1 nghiệm )
Thay \(x=2\) vào \(A=x^2-2x+2020\) ta có :
\(A=2^2-2.2+2020=4-4+2020=2020\)
Vậy giá trị \(A=x^2-2x+2020\) với \(|x-2|=0\) là \(2020\)
( x - 1 )2018 + (y - 2 )2020+(z-3)2022=0
\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y-2=0\\z-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\\z=3\end{matrix}\right.\)
\(A=\dfrac{1}{9}\left(-x\right)^{2021}y^2z^3=\dfrac{1}{3}\left(-1\right)^{2021}.2^2.3^3=\dfrac{1}{3}.\left(-1\right).4.27=-36\)
Ta có: (x - 2)4 \(\ge\)0 \(\forall\)x
(2y - 1)2020 \(\ge\) 0 \(\forall\)y
=> (x - 2)4 + (2y - 1)2020 \(\ge\)0 \(\forall\)x,y
Mà ĐK : (x - 2)4 + (2y - 1)2020 \(\le\)0
=> (x - 2)4 + (2y - 1)2020 = 0
=> \(\hept{\begin{cases}\left(x-2\right)^4=0\\\left(2y-1\right)^{2020}=0\end{cases}}\)
=> \(\hept{\begin{cases}x-2=0\\2y-1=0\end{cases}}\)
=> \(\hept{\begin{cases}x=2\\y=\frac{1}{2}\end{cases}}\)
Với x = 2, y = 1/2 thay vào biểu thức P, ta có:
P = \(21.2^2.\frac{1}{2}+4.2.\left(\frac{1}{2}\right)^2\) = \(42+2=44\)
Vậy giá trị của P = 44
A(1/2^2022)=1/2^2022+1/2^4044+...+1/2^(2022^2021)
=>2^2022*A=1+1/2^2022+...+1/2^(2022^2020)
=>A*(2^2022-1)=1-1/2^(2022^2021)
=>\(A=\dfrac{2^{2022^{2021}}-1}{2^{2022}-1}\)
Xét \(\left(x^2+2020\right)\left(x-10\right)=0\)
Vì \(x^2\ge0\forall x\)\(\Rightarrow x^2+2020\ge2020\forall x\)
\(\Rightarrow\left(x^2+2020\right)\left(x-10\right)=0\)\(\Leftrightarrow x-10=0\)\(\Leftrightarrow x=10\)
Ta thấy: trong biểu thức \(P=\left(x^2-1\right)\left(x^2-2\right)\left(x^2-3\right)......\left(x^2-2020\right)\)có chứa thừa số \(x^2-100\)
Thay \(x=10\)vào thừa số \(x^2-100\)ta được: \(10^2-100=100-100=0\)
\(\Rightarrow P=0\)
Vậy \(P=0\)