\(\frac{3x^2+3x}{\left(x+1\right)\left(2x-6\right)}\)

a)Tìm điều k...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 12 2020

a, \(x\ne-1;3\)

b, Ta có : \(P=\frac{3x^2+3x}{\left(x+1\right)\left(2x-6\right)}=1\)

\(\Leftrightarrow\frac{3x\left(x+1\right)}{\left(x+1\right)\left(2x-6\right)}=1\Leftrightarrow\frac{3x}{2\left(x-3\right)}=1\)

\(\Leftrightarrow3x=2x-6\Leftrightarrow x=-6\)

1 tháng 12 2016

a)\(\hept{\begin{cases}x+1\ne0\\2x-6\ne0\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ne-1\\x\ne3\end{cases}}\)

b)\(\frac{3x^2+3x}{\left(x+1\right)\left(2x-6\right)}=10\)\(\Leftrightarrow\frac{3x\left(x+1\right)}{\left(x+1\right)\left(2x-6\right)}=10\)

\(\Leftrightarrow\frac{3x}{2x-6}=10\)\(\Leftrightarrow3x=10\left(2x-6\right)\)

\(\Leftrightarrow3x=20x-60\)\(\Leftrightarrow17x=60\Leftrightarrow x=\frac{60}{17}\)

5 tháng 10 2019

a, ĐKXĐ: \(\hept{\begin{cases}x^3+1\ne0\\x^9+x^7-3x^2-3\ne0\\x^2+1\ne0\end{cases}}\)

b, \(Q=\left[\left(x^4-x+\frac{x-3}{x^3+1}\right).\frac{\left(x^3-2x^2+2x-1\right)\left(x+1\right)}{x^9+x^7-3x^2-3}+1-\frac{2\left(x+6\right)}{x^2+1}\right]\)

\(Q=\left[\frac{\left(x^3+1\right)\left(x^4-x\right)+x-3}{\left(x+1\right)\left(x^2-x+1\right)}.\frac{\left(x-1\right)\left(x+1\right)\left(x^2-x+1\right)}{\left(x^7-3\right)\left(x^2+1\right)}+1-\frac{2\left(x+6\right)}{x^2+1}\right]\)

\(Q=\left[\left(x^7-3\right).\frac{\left(x-1\right)}{\left(x^7-3\right)\left(x^2+1\right)}+1-\frac{2\left(x+6\right)}{x^2+1}\right]\)

\(Q=\frac{x-1+x^2+1-2x-12}{x^2+1}\)

\(Q=\frac{\left(x-4\right)\left(x+3\right)}{x^2+1}\)

20 tháng 8 2016

a )\(\left[\begin{array}{nghiempt}x+1\ne0\\2x-3\ne0\end{array}\right.\)

\(ĐKXĐ:x\ne-1,x\ne\frac{3}{2}\)

b ) \(A=\frac{2x^2-3x}{\left(x+1\right)\left(2x-3\right)}=\frac{x\left(2x-3\right)}{\left(x+1\right)\left(2x-3\right)}=\frac{x}{x+1}\)

Để \(A=3\) thì :

 \(\frac{x}{x+1}=3\Leftrightarrow x=3x+3\Leftrightarrow x-3x=3\Leftrightarrow-2x=3\Leftrightarrow x=-\frac{3}{2}\)

Chúc bạn học tốt

3 tháng 7 2016

a) ĐKXĐ:\(x\ne-1,x\ne\frac{3}{2}\)

b)\(A=\frac{2x^2-3x}{\left(x+1\right)\left(2x-3\right)}=\frac{x\left(2x-3\right)}{\left(x+1\right)\left(2x-3\right)}=\frac{x}{x+1}\)

để A = 3 thì \(\frac{x}{x+1}=3\Leftrightarrow x=3x+3\Leftrightarrow x-3x=3\Leftrightarrow-2x=3\Leftrightarrow x=\frac{-3}{2}\)

3 tháng 7 2016

DKXD : \(x+1\ne0\Rightarrow x\ne-1,2x-3\ne0\Rightarrow2x\ne3\Rightarrow x\ne\frac{3}{2}\)

\(A=\frac{2x^2-3x}{\left(x+1\right)\left(2x-3\right)}=3\Rightarrow A==\frac{2x^2-3x}{\left(x+1\right)\left(2x-3\right)}=\frac{3.\left(\left(x+1\right)\left(2x-3\right)\right)}{\left(x+1\right)\left(2x-3\right)}\)

\(\Rightarrow A=\frac{2x^2-3x}{\left(x+1\right)\left(2x-3\right)}=\frac{3.\left(2x^2-3x-2x+3\right)}{\left(x+1\right)\left(2x-3\right)}\Rightarrow A=\frac{2x^2-3x}{\left(x+1\right)\left(2x-3\right)}=\frac{6x^2-9x-6x+9}{\left(x+1\right)\left(2x-3\right)}\)\(\Rightarrow A=2x^2-3x=6x^2-15x+9\Rightarrow A=0=4x^2-12x+9\Rightarrow A=0=\left(2x-3\right)^2\)

\(\Rightarrow2x-3=0\Rightarrow x=\frac{3}{2}\left(TMDKXD\right)\)

t i c k cho mình 1 cái nha mình bị trừ 50đ ùi hic hic ủng hộ nhé

7 tháng 1 2017

a) P xác định  <=> \(\hept{\begin{cases}x+1\ne0\\2x-6\ne0\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ne-1\\x\ne3\end{cases}}\)

b)\(P=\frac{3x^2+3x}{\left(x+1\right)\left(2x-6\right)}=1\Leftrightarrow3x^2+3x=\left(x+1\right)\left(2x-6\right)\)

\(\Leftrightarrow3x\left(x+1\right)-\left(x+1\right)\left(2x-6\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(3x-2x+6\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+6\right)=0\)

Vì \(x\ne-1\Leftrightarrow x+1\ne0\Rightarrow x+6=0\Leftrightarrow x=-6\)

Vậy ........

7 tháng 1 2017

ĐKXĐ: x khac -1 và x khac 3

19 tháng 4 2018

a) \(P=\frac{3x^2+3x}{\left(x+1\right)\left(3x-6\right)}\left(ĐKXĐ:x\ne-1;2\right)\)

b)   \(P=\frac{3x\left(x+1\right)}{\left(x+1\right)\left(3x-6\right)}\)

\(P=\frac{3x}{3x-6}\)

Khi  \(x=3\Leftrightarrow P=\frac{3\times3}{3\times3-6}\)

\(\Leftrightarrow P=3\)

c) Để P = 1 thì \(\frac{3x}{3x-6}=1\)

\(\Leftrightarrow3x=3x-6\)

\(\Leftrightarrow-6x=-6\)

\(\Leftrightarrow x=1\)

d) Ta có : \(P>2\Leftrightarrow\frac{3x}{3x-6}>2\)

\(\Leftrightarrow3x>2\left(3x-6\right)\)

\(\Leftrightarrow3x>6x-12\)

\(\Leftrightarrow-3x>-12\)

\(\Leftrightarrow x< 4\)