K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 3 2017

DAT P = Q:R \(Q=\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}-2\right)\left(3\sqrt{a}-1\right)}-\dfrac{\sqrt{a}-3}{\left(\sqrt{a}-3\right)\left(3\sqrt{a}-1\right)}+\dfrac{8\sqrt{a}}{\left(3\sqrt{a}-1\right)\left(3\sqrt{a}+1\right)}\)

\(=\dfrac{\sqrt{a}-1}{3\sqrt{a}-1}-\dfrac{1}{3\sqrt{a}+1}+\dfrac{8\sqrt{a}}{\left(3\sqrt{a}-1\right)\left(3\sqrt{a}+1\right)}\)

\(=\dfrac{3\sqrt{a}\left(\sqrt{a}+1\right)}{\left(3\sqrt{a}-1\right)\left(3\sqrt{a}+1\right)}\)

\(R=1-\dfrac{2\sqrt{a}-a+1}{3\sqrt{a}+1}=\dfrac{a+\sqrt{a}}{3\sqrt{a}+1}=\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)}{3\sqrt{a}+1}\)

\(\Rightarrow P=Q:R=\dfrac{3\sqrt{a}\left(\sqrt{a}+1\right)}{\left(3\sqrt{a}-1\right)\left(3\sqrt{a}+1\right)}\times\dfrac{3\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}+1\right)}\)

\(P=\dfrac{3}{3\sqrt{a}-1}\)

\(P>\dfrac{3}{\left|1-3\sqrt{5}\right|}\Leftrightarrow\dfrac{3}{3\sqrt{a}-1}>\dfrac{3}{3\sqrt{5-1}}\)

\(3\sqrt{a}-1< 3\sqrt{5}-1\)

\(\Rightarrow0\le\sqrt{a}\le\sqrt{5}\)

\(a=\) 0 ;1 ;2 ;3 ;4

​a lớn nhất \(\Rightarrow a\) = 4

13 tháng 3 2017

Bạn rút gọn được P chưa ?~!

24 tháng 5 2017

1, đk: \(x>0\)\(x\ne4\)

Ta có: A=\(\dfrac{1}{2\sqrt{x}-x}=\dfrac{1}{-\left(x-2\sqrt{x}+1\right)+1}=\dfrac{1}{-\left(\sqrt{x}-1\right)^2+1}\)

Ta luôn có: \(-\left(\sqrt{x}-1\right)^2\le0\) với \(x>0\)\(x\ne4\)

\(\Rightarrow-\left(\sqrt{x}-1\right)^2+1\le1\)

\(\Rightarrow A\ge1\). Dấu "=" xảy ra <=> x=1 (t/m)

Vậy MinA=1 khi x=1

2, đk: \(x\ge0;x\ne1;x\ne9\)

Ta có: B=\(\dfrac{1}{x-4\sqrt{x}+3}=\dfrac{1}{\left(x-4\sqrt{x}+4\right)-1}=\dfrac{1}{\left(\sqrt{x}-2\right)^2-1}\)

Ta luôn có: \(\left(\sqrt{x}-2\right)^2\ge0\) với \(x\ge0;x\ne1;x\ne9\)

\(\Rightarrow\left(\sqrt{x}-2\right)^2-1\ge-1\)

\(\Rightarrow B\le-1\). Dấu "=" xảy ra <=> x=4 (t/m)

Vậy MaxB=-1 khi x=4

3, đk: \(x\ge0;x\ne15+4\sqrt{11}\)

Ta có: C=\(\dfrac{1}{4\sqrt{x}-x+7}=\dfrac{1}{-\left(x-4\sqrt{x}+4\right)+11}=\dfrac{1}{-\left(\sqrt{x}-2\right)^2+11}\)

Ta luôn có: \(-\left(\sqrt{x}-2\right)^2\le0\) với \(x\ge0;x\ne15+4\sqrt{11}\)

\(\Rightarrow-\left(\sqrt{x}-2\right)^2+11\le11\)

\(\Rightarrow C\ge\dfrac{1}{11}\). Dấu "=" xảy ra <=> x=4 (t/m)

Vậy MinC=\(\dfrac{1}{11}\) khi x=4

12 tháng 7 2017

1a) \(\sqrt{4+\sqrt{8}}.\sqrt{2+\sqrt{2+\sqrt{2}}}.\sqrt{2-\sqrt{2+\sqrt{2}}}\)

\(=\sqrt{4+\sqrt{8}}.\sqrt{\left(2+\sqrt{2+\sqrt{2}}\right)\left(\sqrt{2-\sqrt{2+\sqrt{2}}}\right)}\)

\(=\sqrt{4+\sqrt{8}}.\sqrt{4-2-\sqrt{2}}\)

\(=\sqrt{4+\sqrt{8}}.\sqrt{2-\sqrt{2}}=\sqrt{\left(4+\sqrt{8}\right)\left(2-\sqrt{2}\right)}\)

\(=\sqrt{8-4\sqrt{2}-\sqrt{16}+2\sqrt{8}}\)

\(=\sqrt{8-4\sqrt{2}-4+4\sqrt{2}}\)

\(=\sqrt{4}=2\)

12 tháng 7 2017

1b) \(\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}\)

\(=\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{4+4\sqrt{3}+3}}}\)

\(=\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{\left(2+\sqrt{3}\right)^2}}}\)

\(=\sqrt{5\sqrt{3}+5\sqrt{48-20-10\sqrt{3}}}\)

\(=\sqrt{5\sqrt{3}+5\sqrt{28-10\sqrt{3}}}\)

\(=\sqrt{5\sqrt{3}+5\sqrt{25-10\sqrt{3}+3}}\)

\(=\sqrt{5\sqrt{3}+5\sqrt{\left(5-\sqrt{3}\right)^2}}\)

\(=\sqrt{5\sqrt{3}+25-5\sqrt{3}}\)

\(=\sqrt{25}=5\)

a: \(\left(3+\sqrt{5}\right)^2=14+6\sqrt{5}\)

\(\left(2\sqrt{2}+\sqrt{6}\right)^2=14+4\sqrt{12}\)

mà \(6\sqrt{5}< 4\sqrt{12}\)

nên \(3+\sqrt{5}< 2\sqrt{2}+\sqrt{6}\)

c: \(\sqrt{14}-\sqrt{13}=\dfrac{1}{\sqrt{14}+\sqrt{13}}\)

\(\sqrt{12}-\sqrt{11}=\dfrac{1}{\sqrt{12}+\sqrt{11}}\)

mà \(\dfrac{1}{\sqrt{14}+\sqrt{13}}< \dfrac{1}{\sqrt{12}+\sqrt{11}}\)

nên \(\sqrt{14}-\sqrt{13}< \sqrt{12}-\sqrt{11}\)

16 tháng 6 2017

đk : \(x\ne4\) ; \(x\ge0\)

1) a) Q = \(\dfrac{2}{2+\sqrt{x}}+\dfrac{1}{2-\sqrt{x}}+\dfrac{2\sqrt{x}}{x-4}\)

Q = \(\dfrac{2}{2+\sqrt{x}}+\dfrac{1}{2-\sqrt{x}}-\dfrac{2\sqrt{x}}{4-x}\)

Q = \(\dfrac{2}{2+\sqrt{x}}+\dfrac{1}{2-\sqrt{x}}-\dfrac{2\sqrt{x}}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\)

Q = \(\dfrac{2\left(2-\sqrt{x}\right)+2+\sqrt{x}-2\sqrt{x}}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\)

Q = \(\dfrac{4-2\sqrt{x}+2+\sqrt{x}-2\sqrt{x}}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\)

Q = \(\dfrac{6-3\sqrt{x}}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\) = \(\dfrac{3\left(2-\sqrt{x}\right)}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\)

Q = \(\dfrac{3}{2+\sqrt{x}}\)

b) ta có Q = \(\dfrac{6}{5}\) \(\Leftrightarrow\) \(\dfrac{3}{2+\sqrt{x}}\) = \(\dfrac{6}{5}\) \(\Leftrightarrow\) \(\dfrac{6}{4+2\sqrt{x}}\) = \(\dfrac{6}{5}\)

\(\Leftrightarrow\) \(4+2\sqrt{x}=5\) \(\Leftrightarrow\) \(2\sqrt{x}=1\) \(\Leftrightarrow\) \(\sqrt{x}=\dfrac{1}{2}\) \(\Leftrightarrow\) \(x=\dfrac{1}{4}\)

c) điều x nguyên ; x \(\ge\) 0 ; x\(\ne\) 4

ta có Q nguyên \(\Leftrightarrow\) \(\dfrac{3}{2+\sqrt{x}}\) nguyên

\(\Rightarrow\) \(2+\sqrt{x}\) là ước của 3 là 3 ; 1 ; -1 ; -3

\(2+\sqrt{x}\ge2\) (đk :\(x\ge0\)) vậy còn lại 3

\(\Leftrightarrow\) \(2+\sqrt{x}=3\) \(\Leftrightarrow\) x = 1 (tmđk)

vậy x = 1 nguyên thì Q nguyên

16 tháng 6 2017

2) a) \(\sqrt{16a}+2\sqrt{40a}-3\sqrt{90a}\) = \(4\sqrt{a}+4\sqrt{10a}-9\sqrt{10a}\)

= \(4\sqrt{a}-5\sqrt{10a}\)

b) \(\left(2\sqrt{3}+5\right)\sqrt{3}-\sqrt{60}\) = \(6+5\sqrt{3}-\sqrt{60}\)

c) \(\left(\sqrt{99}-\sqrt{8}-\sqrt{11}\right)\sqrt{11}+3\sqrt{22}\)

= \(33-2\sqrt{22}-11+3\sqrt{22}\)

= \(22+\sqrt{22}\)

7 tháng 6 2017

1) a) \(\sqrt{27}\) + \(\sqrt{75}\) - \(\sqrt{\dfrac{1}{3}}\) = \(3\sqrt{3}\) + \(5\sqrt{3}\) - \(\dfrac{\sqrt{3}}{3}\) = \(8\sqrt{3}\) - \(\dfrac{\sqrt{3}}{3}\)

= \(\dfrac{23\sqrt{3}}{3}\)

b) \(\sqrt{4+2\sqrt{3}}\) \(-\sqrt{4-2\sqrt{3}}\)

= \(\sqrt{\left(\sqrt{3}\right)^2+2.\sqrt{3}.1+1^2}\) \(-\sqrt{\left(\sqrt{3}\right)^2-2.\sqrt{3}.1+1^2}\)

= \(\sqrt{\left(\sqrt{3}+1\right)^2}\) \(-\sqrt{\left(\sqrt{3}-1\right)^2}\)

= \(\left(\sqrt{3}+1\right)\) \(-\left(\sqrt{3}-1\right)\)

= \(\sqrt{3}+1-\sqrt{3}+1\)

= 2

7 tháng 6 2017

2) \(\left(\dfrac{\sqrt{a}}{\sqrt{a}-1}-\dfrac{1}{a-\sqrt{a}}\right)\) : \(\left(\dfrac{1}{\sqrt{a}+1}+\dfrac{2}{a-1}\right)\)

= \(\left(\dfrac{\sqrt{a}}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right)\) : \(\left(\dfrac{1}{\sqrt{a}+1}+\dfrac{2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right)\)

= \(\left(\dfrac{a-1}{\left(\sqrt{a}-1\right)\sqrt{a}}\right)\) : \(\left(\dfrac{\left(\sqrt{a}-1\right)+2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right)\)

= \(\left(\dfrac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\left(\sqrt{a}-1\right)\sqrt{a}}\right)\) : \(\left(\dfrac{\left(\sqrt{a}-1\right)+2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right)\)

= \(\dfrac{\sqrt{a}+1}{\sqrt{a}}\) : \(\dfrac{2}{\sqrt{a}+1}\) = \(\dfrac{\sqrt{a}+1}{\sqrt{a}}\) . \(\dfrac{\sqrt{a}+1}{2}\) = \(\dfrac{\left(\sqrt{a}+1\right)^2}{2\sqrt{a}}\)

4 tháng 8 2017

1. \(\left(1+\dfrac{a+\sqrt{a}}{\sqrt{a}+1}\right)\left(1-\dfrac{a-\sqrt{a}}{\sqrt{a}-1}\right)\)

\(=\left(1+\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}\right)\left(1-\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right)\)

\(=\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)=1-a\)

2. a) Với a>b>0 thì

\(Q=\dfrac{a}{\sqrt{a^2-b^2}}-\left(1+\dfrac{a}{\sqrt{a^2-b^2}}\right):\dfrac{b}{a-\sqrt{a^2-b^2}}\)

\(=\dfrac{a}{\sqrt{a^2-b^2}}-\dfrac{a+\sqrt{a^2-b^2}}{\sqrt{a^2-b^2}}.\dfrac{a-\sqrt{a^2-b^2}}{b}\)

\(=\dfrac{a}{\sqrt{a^2-b^2}}-\dfrac{a^2-\left(a^2-b^2\right)}{b\sqrt{a^2-b^2}}\)

\(=\dfrac{a}{\sqrt{a^2-b^2}}-\dfrac{b^2}{b\sqrt{a^2-b^2}}=\dfrac{a}{\sqrt{a^2-b^2}}-\dfrac{b}{\sqrt{a^2-b^2}}\)

\(=\dfrac{a-b}{\sqrt{a^2-b^2}}=\dfrac{a-b}{\sqrt{a-b}.\sqrt{a+b}}=\sqrt{\dfrac{a-b}{a+b}}\)

b) Thay a = 3b ta được

\(Q=\sqrt{\dfrac{a-b}{a+b}}=\sqrt{\dfrac{3b-b}{3b+b}}=\sqrt{\dfrac{2b}{4b}}=\sqrt{\dfrac{1}{2}}=\dfrac{\sqrt{2}}{2}\)

4 tháng 8 2017

1) d) ta có : \(VT=\left(1+\dfrac{a+\sqrt{a}}{\sqrt{a}+1}\right)\left(1-\dfrac{a-\sqrt{a}}{\sqrt{a}-1}\right)\)

\(\Leftrightarrow\left(1+\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}\right)\left(1-\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right)\)

\(\Leftrightarrow\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)=1-a=VP\)

\(\Rightarrow\) \(\left(1+\dfrac{a+\sqrt{a}}{\sqrt{a}+1}\right)\left(1-\dfrac{a-\sqrt{a}}{\sqrt{a}-1}\right)=1-a\) (đpcm)

3 tháng 7 2017

\(P=\dfrac{1}{1+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+\dfrac{1}{\sqrt{3}+\sqrt{4}}+...+\dfrac{1}{\sqrt{99}+\sqrt{100}}\)

\(P=\dfrac{\sqrt{2}-1}{\left(1+\sqrt{2}\right)\left(\sqrt{2}-1\right)}+\dfrac{\sqrt{3}-\sqrt{2}}{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{3}-\sqrt{2}\right)}+...+\dfrac{\sqrt{100}-\sqrt{99}}{\left(\sqrt{99}+\sqrt{100}\right)\left(\sqrt{100}-\sqrt{99}\right)}\)

\(P=\dfrac{\sqrt{2}-1}{2-1}+\dfrac{\sqrt{3}-\sqrt{2}}{3-2}+...+\dfrac{\sqrt{100}-\sqrt{99}}{100-99}\)

\(P=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{100}-\sqrt{99}\)

\(P=-1+\sqrt{100}=-1+10=9\)

3 tháng 7 2017

Áp dụng:\(\dfrac{1}{\sqrt{a}+\sqrt{a+1}}=\dfrac{\sqrt{a+1}-\sqrt{a}}{\left(\sqrt{a}+\sqrt{a+1}\right)\left(\sqrt{a+1}-\sqrt{a}\right)}=\dfrac{\sqrt{a+1}-\sqrt{a}}{a+1-a}=\sqrt{a+1}-\sqrt{a}\)

13 tháng 3 2017

a=3

14 tháng 3 2017

a =4 .bạn xem MÌNH trả lời câu hỏi của NGUYỄN THỊ DIỆP