Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\(A=\left(\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\frac{\sqrt{x}-2}{x-1}\right):\frac{\sqrt{x}}{\sqrt{x}+1}\left(x\ge0;x\ne1\right)\)\)
\(\(=\left(\frac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}-\frac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\frac{\sqrt{x}}{\sqrt{x}+1}\)\)
\(\(=\frac{\left(\sqrt{x}-1\right).\left(\sqrt{x}+2\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}:\frac{\sqrt{x}}{\sqrt{x}+1}\)\)
\(\(=\frac{x+2\sqrt{x}-\sqrt{x}-2-\left(x+\sqrt{x}-2\sqrt{x}-2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}:\frac{\sqrt{x}}{\sqrt{x}+1}\)\)
\(=\frac{x+2\sqrt{x}-\sqrt{x}-2-x-\sqrt{x}+2\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}:\frac{\sqrt{x}}{\sqrt{x}+1}\)
\(=\frac{2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}.\frac{\sqrt{x}+1}{\sqrt{x}}\)
\(=\frac{2}{x-1}\)
Vậy \(A=\frac{2}{x-1}vs\left(x\ge0;x\ne1\right)\)
_Ko chắc , đag bận nên còn phần b , tí mk giải nối_
_Minh ngụy_
\(ĐK:x\ge0;x\ne1\)
\(a,A=\left(\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\frac{\sqrt{x}-2}{x-1}\right):\frac{\sqrt{x}}{\sqrt{x}+1}\)
\(=\left(\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\right):\frac{\sqrt{x}}{\sqrt{x}+1}\)
\(=\left(\frac{x-\sqrt{x}+2\sqrt{x}-2}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}-\frac{x+\sqrt{x}-2\sqrt{x}-2}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\right):\frac{\sqrt{x}}{\sqrt{x}+1}\)
\(=\frac{x-\sqrt{x}+2\sqrt{x}-2-x-\sqrt{x}+2\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}.\frac{\sqrt{x}+1}{\sqrt{x}}\)
\(=\frac{2\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)\sqrt{x}}\)
\(=\frac{2}{x-1}\)
Vậy với \(x\ge0;x\ne1\)thì \(A=\frac{2}{x-1}\)
\(b,\)Ta có:\(A=\frac{2}{x-1}\)
Để A nhận giá trị nguyên \(\Leftrightarrow2⋮x-1\)
Vì \(x\in Z\Rightarrow x-1\inƯ_{\left(2\right)}=\left\{\pm1;\pm2\right\}\)
Ta có bảng sau:
\(x-1\) | \(1\) | \(-1\) | \(2\) | \(-2\) |
\(x\) | \(2\left(TM\right)\) | \(0\left(TM\right)\) | \(3\left(TM\right)\) | \(-1\left(L\right)\) |
Vậy để A nhận giá trị nguyên \(x\in\left\{2;0;3\right\}\)
a) \(ĐKXĐ:\hept{\begin{cases}x>0\\x\ne1\end{cases}}\)
\(M=\frac{\sqrt{x}}{\sqrt{x}-x}-\frac{\sqrt{x}+2}{1-x}\)
\(\Leftrightarrow M=\frac{1}{1-\sqrt{x}}-\frac{\sqrt{x}+2}{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}\)
\(\Leftrightarrow M=\frac{1+\sqrt{x}-\sqrt{x}-2}{1-x}\)
\(\Leftrightarrow M=\frac{-1}{1-x}\)
\(\Leftrightarrow M=\frac{1}{x-1}\)
b) Để M nhận giá trị nguyên
\(\Leftrightarrow\frac{1}{x-1}\inℤ\)
\(\Leftrightarrow x-1\inƯ\left(1\right)=\left\{\pm1\right\}\)
\(\Leftrightarrow x\in\left\{0;2\right\}\)
Mà \(x>0\)
Vậy để M nguyên \(\Leftrightarrow x=2\)
1) \(ĐKXĐ:\hept{\begin{cases}x\ge0\\x\ne4\end{cases}}\)
\(P=\frac{2+\sqrt{x}}{2-\sqrt{x}}-\frac{2-\sqrt{x}}{2+\sqrt{x}}-\frac{4x}{x-4}\)
\(\Leftrightarrow P=\frac{\left(2+\sqrt{x}\right)^2-\left(2-\sqrt{x}\right)^2+4x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\)
\(\Leftrightarrow P=\frac{4+4\sqrt{x}+x-4+4\sqrt{x}-x+4x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\)
\(\Leftrightarrow P=\frac{4x+8\sqrt{x}}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\)
\(\Leftrightarrow P=\frac{4\sqrt{x}}{2-\sqrt{x}}\)
2) Để \(P=2\)
\(\Leftrightarrow\frac{4\sqrt{x}}{2-\sqrt{x}}=2\)
\(\Leftrightarrow4\sqrt{x}=4-2\sqrt{x}\)
\(\Leftrightarrow6\sqrt{x}=4\)
\(\Leftrightarrow\sqrt{x}=\frac{2}{3}\)
\(\Leftrightarrow x=\frac{4}{9}\)
Vậy để \(P=2\Leftrightarrow x=\frac{4}{9}\)
3) Khi \(\left(\sqrt{x}-2\right)\left(2\sqrt{x}-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}-2=0\\2\sqrt{x}-1==0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=2\\\sqrt{x}=\frac{1}{2}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=4\left(ktm\right)\\x=\frac{1}{4}\left(tm\right)\end{cases}}\)
Thay \(x=\frac{1}{4}\)vào P, ta được :
\(\Leftrightarrow P=\frac{4\sqrt{\frac{1}{4}}}{2-\sqrt{\frac{1}{4}}}=\frac{4\cdot\frac{1}{2}}{2-\frac{1}{2}}=\frac{2}{\frac{3}{2}}=\frac{4}{3}\)
4) Để \(P=\frac{\sqrt{x}+3}{2\sqrt{x}-1}\)
\(\Leftrightarrow\frac{4\sqrt{x}}{2-\sqrt{x}}=\frac{\sqrt{x}+3}{2\sqrt{x}-1}\)
\(\Leftrightarrow8x-4\sqrt{x}=-x-\sqrt{x}+6\)
\(\Leftrightarrow9x-3\sqrt{x}-6=0\)
\(\Leftrightarrow3x-\sqrt{x}-2=0\)
\(\Leftrightarrow\sqrt{x}=3x-2\)
\(\Leftrightarrow x=9x^2-12x+4\)
\(\Leftrightarrow9x^2-13x+4=0\)
\(\Leftrightarrow\left(9x-4\right)\left(x-1\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}9x-4=0\\x-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{4}{9}\\x=1\end{cases}}\)
Thử lại ta được kết quá : \(x=\frac{4}{9}\left(ktm\right)\); \(x=1\left(tm\right)\)
Vậy để \(P=\frac{\sqrt{x}+3}{2\sqrt{x}-1}\Leftrightarrow x=1\)
5) Để biểu thức nhận giá trị nguyên
\(\Leftrightarrow\frac{4\sqrt{x}}{2-\sqrt{x}}\inℤ\)
\(\Leftrightarrow4\sqrt{x}⋮2-\sqrt{x}\)
\(\Leftrightarrow-4\left(2-\sqrt{x}\right)+8⋮2-\sqrt{x}\)
\(\Leftrightarrow8⋮2-\sqrt{x}\)
\(\Leftrightarrow2-\sqrt{x}\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{1;3;0;4;-2;6;-6;10\right\}\)
Ta loại các giá trị < 0
\(\Leftrightarrow\sqrt{x}\in\left\{1;3;0;4;6;10\right\}\)
\(\Leftrightarrow x\in\left\{1;9;0;16;36;100\right\}\)
Vậy để \(P\inℤ\Leftrightarrow x\in\left\{1;9;0;16;36;100\right\}\)
\(\)
a ) \(ĐKXĐ:x\ge0;x\ne1\)
= \(\frac{x+1+\sqrt{x}}{x+1}:\left[\frac{1}{\sqrt{x}-1}-\frac{2\sqrt{x}}{\left(x+1\right)\left(\sqrt{x}-1\right)}\right]-1\)
\(=\frac{x+1+\sqrt{x}}{x+1}:\frac{x+1-2\sqrt{x}}{\left(x+1\right)\left(\sqrt{x}-1\right)}-1\)
\(=\frac{x+1+\sqrt{x}}{x+1}:\frac{\left(\sqrt{x}-1\right)^2}{\left(x+1\right)\left(\sqrt{x}-1\right)}-1\)
\(=\frac{\left(x+1+\sqrt{x}\right)\left(x+1\right)\left(\sqrt{x}-1\right)}{\left(x+1\right)\left(\sqrt{x}-1\right)^2}-1\)
\(=\frac{x+1+\sqrt{x}}{\sqrt{x}-1}-1=\frac{x+2}{\sqrt{x}-1}\)
B ) Ta có :
\(Q=P-\sqrt{x}\)
\(=\frac{\sqrt{x}+2}{\sqrt{x}-1}-\sqrt{x}\)
\(=\frac{\sqrt{x}+2}{\sqrt{x}-1}=\frac{\left(\sqrt{x}-1\right)+3}{\sqrt{x}-1}=1+\frac{3}{\sqrt{x}-1}\)
Đế Q nhận giá trị nguyên thì \(1+\frac{3}{\sqrt{x}-1}\in Z\)
\(\Leftrightarrow\frac{3}{\sqrt{x}-1}\in Z\left(vì1\in Z\right)\)
\(\Leftrightarrow\sqrt{x}-1\inƯ\left(3\right)\)
Ta có bảng sau :
\(\sqrt{x}-1\) | 3 | -3 | 1 | -1 |
\(\sqrt{x}\) | 4 | -2 | 2 | 0 |
\(x\) | 16(t/m) | 4(t/m) | 0(t/m) |
Vậy để biểu thức \(Q=P-\sqrt{x}\) nhận giá trị nguyên thì \(x\in\left\{16;4;0\right\}\)
ĐK để phân thức XĐ : x khác 1 và x> 0
Đặt \(B=\left(\frac{\left(\sqrt{x}+2\right)\left(x-1\right)-\left(\sqrt{x}-2\right)\left(x+2\sqrt{x}+1\right)}{\left(x+2\sqrt{x}+1\right)\left(x-1\right)}\right)\) ( Đây là mình vừa đặt vừa làm mẫu thức chung nhe)
=> \(B=\left(\frac{x\sqrt{x}-\sqrt{x}+2x-2-x\sqrt{x}-2x-\sqrt{x}+2x+4\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2\left(x-1\right)}\right)\)
=>\(B=\frac{2\sqrt{x}+2x}{\left(\sqrt{x}+1\right)^2\left(x-1\right)}=\frac{2\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2\left(x-1\right)}=\frac{2\sqrt{x}}{\left(\sqrt{x}+1\right)\left(x-1\right)}\)
A = \(B:\frac{\sqrt{x}}{\sqrt{x+1}}=\frac{2\sqrt{x}}{\left(\sqrt{x}+1\right)\left(x-1\right)}\cdot\frac{\sqrt{x}+1}{\sqrt{x}}=\frac{2}{x-1}\)
B, Bạn tự làm ý B nhe
HD để A nguyên => x - 1 thuộc ước của 2 mà 2 có các ước là +-1 và +-2
(+) với x-1 = 2 => x = 3
............................