K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 2 2022

ĐKXĐ: \(x\ne\pm3\)

\(P=\left[\dfrac{x\left(x+3\right)}{x^2\left(x+3\right)+9\left(x+3\right)}+\dfrac{3}{x^2+9}\right]:\left[\dfrac{1}{x-3}-\dfrac{6x}{x^2\left(x-3\right)+9\left(x-3\right)}\right]\)

\(=\left[\dfrac{x\left(x+3\right)}{\left(x+3\right)\left(x^2+9\right)}+\dfrac{3}{x^2+9}\right]:\left[\dfrac{1}{x-3}-\dfrac{6x}{\left(x-3\right)\left(x^2+9\right)}\right]\)

\(=\dfrac{x+3}{x^2+9}:\dfrac{x^2+9-6x}{\left(x-3\right)\left(x^2+9\right)}=\dfrac{x+3}{x^2+9}.\dfrac{\left(x-3\right)\left(x^2+9\right)}{\left(x-3\right)^2}=\dfrac{x+3}{x-3}\)

Ý 2 mình k hiểu ý bạn lắm

\(P=\dfrac{x+3}{x-3}=\dfrac{x-3+6}{x-3}=1+\dfrac{6}{x-3}\in Z\)

\(\Leftrightarrow\left(x-3\right)\inƯ\left(6\right)=\left\{-6;-3;-2;-1;1;2;3;6\right\}\)

Kết hợp vs ĐKXĐ \(\Rightarrow x\in\left\{0;1;2;4;5;6;9\right\}\)

a: A=[(3x^2+3-x^2+2x-1-x^2-x-1)/(x-1)(x^2+x+1)]*(x-2)/2x^2-5x+5

=(x^2+x+1)/(x-1)(x^2+x+1)*(x-2)/2x^2-5x+5

=(x-2)/(2x^2-5x+5)(x-1)

 

Câu 1: 

a: Để M là số nguyên thì \(2x^3-6x^2+x-3-5⋮x-3\)

\(\Leftrightarrow x-3\in\left\{1;-1;5;-5\right\}\)

hay \(x\in\left\{4;2;8;-2\right\}\)

b: Để N là số nguyên thì \(3x^2+2x-3x-2+5⋮3x+2\)

\(\Leftrightarrow3x+2\in\left\{1;-1;5;-5\right\}\)

hay \(x\in\left\{-\dfrac{1}{3};-1;1;-\dfrac{7}{3}\right\}\)

11 tháng 2 2019

viết giấy gì mà hay thế bạn ?

Thực hiện phép tínha) \(\frac{\text{x + 9}}{x^2 - 9}-\frac{\text{3}}{\text{x^2 + 3x}}\)b) \(\frac{\text{3x + 5 }}{\text{x^2 - 5x }}+\frac{\text{ 25 - x }}{\text{25 - 5x }}\)c) \(\frac{\text{3 }}{\text{2x }}+\frac{\text{3x - 3 }}{\text{2x - 1 }}+\frac{ 2x^2 + 1 }{\text{4x^2 - 2x }}\)d) \(\frac{\text{1}}{\text{3x - 2 }}-\frac{1}{\text{3x + 2 }}- \frac{\text{3x - 6}}{\text{4 - 9x^2}}\)e) \(\frac{\text{18 }}{\text{(x - 3)(x^2 - 9) }}-\frac{\text{3 }}{\text{x^2 - 6x + 9 ...
Đọc tiếp

Thực hiện phép tính
a) \(\frac{\text{x + 9}}{x^2 - 9}-\frac{\text{3}}{\text{x^2 + 3x}}\)

b) \(\frac{\text{3x + 5 }}{\text{x^2 - 5x }}+\frac{\text{ 25 - x }}{\text{25 - 5x }}\)

c) \(\frac{\text{3 }}{\text{2x }}+\frac{\text{3x - 3 }}{\text{2x - 1 }}+\frac{ 2x^2 + 1 }{\text{4x^2 - 2x }}\)

d) \(\frac{\text{1}}{\text{3x - 2 }}-\frac{1}{\text{3x + 2 }}- \frac{\text{3x - 6}}{\text{4 - 9x^2}}\)
e) \(\frac{\text{18 }}{\text{(x - 3)(x^2 - 9) }}-\frac{\text{3 }}{\text{x^2 - 6x + 9 }}-\frac{\text{x}}{\text{x^2 - 9}}\)
g) \(\frac{\text{x + 2 }}{\text{x + 3 }}-\frac{\text{5 }}{\text{x^2 + x - 6 }}+\frac{\text{1}}{\text{2 - x}}\)
h) \(\frac{\text{4x }}{\text{x + 2 }}-\frac{\text{3x }}{\text{x - 2 }}+\frac{\text{12x}}{\text{x^2 - 4}}\)
i) \(\frac{\text{ x + 1 }}{\text{ x - 1 }}-\frac{\text{ x - 1 }}{\text{ x + 1 }}-\frac{\text{4}}{\text{1 - x^2}}\)
k) \(\frac{\text{ 3x + 21 }}{\text{ x^2 - 9 }}+\frac{\text{2 }}{\text{x + 3 }}-\frac{\text{3}}{\text{x - 3}}\)

 

0
11 tháng 12 2016

Không chép lại đề nhé:

\(1A=\left(\frac{x\left(x+3\right)}{\left(x+3\right)\left(x^2+9\right)}+\frac{3}{x^2+9}\right):\left(\frac{1}{x-3}-\frac{6x}{\left(x-3\right)\left(x^2+9\right)}\right)\)

\(=\frac{x+3}{x^2+9}:\frac{x^2+9-6x}{\left(x-3\right)\left(x^2+9\right)}\)

\(=\frac{x+3}{x^2+9}.\frac{\left(x-3\right)\left(x^2+9\right)}{\left(x-3\right)^2}\)

\(=\frac{x+3}{x-3}\)

11 tháng 12 2016

b/ Với x > 0 thì P không xác định khi x = 3 (vì mẫu sẽ = 0)

c/ \(A=\frac{x+3}{x-3}=1+\frac{6}{x-3}\)

Để A nguyên thì (x - 3) phải là ước nguyên của 6 hay

(x - 3) \(\in\)(- 1; - 2; - 3, - 6; 1; 2; 3; 6)

Thế vào sẽ tìm được A

ĐKXĐ thì b tự làm nhé 

14 tháng 12 2022

a: 

Sửa đề: \(P=\left(\dfrac{x^2+3x}{x^3+3x^2+9x+27}+\dfrac{3}{x^2+9}\right):\left(\dfrac{1}{x+3}-\dfrac{6x}{x^3+3x^2+9x+27}\right)\)\(P=\left(\dfrac{x\left(x+3\right)}{x^2\left(x+3\right)+9\left(x+3\right)}+\dfrac{3}{x^2+9}\right):\left(\dfrac{1}{x+3}-\dfrac{6x}{x^2\left(x+3\right)+9\left(x+3\right)}\right)\)

\(=\left(\dfrac{x}{x^2+9}+\dfrac{3}{x^2+9}\right):\left(\dfrac{1}{x+3}-\dfrac{6x}{\left(x+3\right)\left(x^2+9\right)}\right)\)

\(=\dfrac{x+3}{x^2+9}:\dfrac{x^2+9-6x}{\left(x+3\right)\left(x^2+9\right)}\)

\(=\dfrac{x+3}{x^2+9}\cdot\dfrac{\left(x+3\right)\left(x^2+9\right)}{\left(x-3\right)^2}=\dfrac{\left(x+3\right)^2}{\left(x-3\right)^2}\)

b: x>0 thì x+3>3; x-3>-3

=>(x+3)^2>9; (x-3)^2>9

=>P>1

=>P ko nhận số 1

28 tháng 6 2017

Phép nhân các phân thức đại số

a: \(A=\dfrac{1}{x^2+x+1}+\dfrac{2}{x-1}-\dfrac{x^2+2x}{x^3-1}\)

\(=\dfrac{x-1+2x^2+2x+2-x^2-2x}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\dfrac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{1}{x-1}\)

b: Để A là số nguyên thì \(x-1\in\left\{1;-1\right\}\)

hay \(x\in\left\{2;0\right\}\)

17 tháng 7 2017

Nguyễn Huy Tú :v

17 tháng 7 2017

a,\(\dfrac{3}{x-3}\) - \(\dfrac{6x}{9-x^2}\) + \(\dfrac{x}{x+3}\) (*)

đkxđ: x khác 3, x khác -3

(*) \(\dfrac{3(x+3)}{\left(x-3\right).\left(x+3\right)}\)- \(\dfrac{6x}{\left(x-3\right).\left(x+3\right)}\) + \(\dfrac{x\left(x+3\right)}{\left(x-3\right).\left(x+3\right)}\)

=>3x+9 -6x + x2+3x

<=>x2 + 3x-6x+3x + 9

<=>x2 +9

<=>(x-3).(x+3)