K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2016

a)\(A=\frac{x+1}{x^2+2x+1}:\left(\frac{1}{x^2-x}+\frac{1}{x-1}\right)\left(ĐK:x\ne0;x\ne1\right)\)

\(=\frac{x+1}{\left(x+1\right)^2}:\frac{1+x}{x\left(x-1\right)}\)

\(=\frac{1}{x+1}\cdot\frac{x\left(x+1\right)}{x+1}=\frac{x}{x+1}\)

b)Có: \(x^2+x-2=0\\ \Leftrightarrow x^2-x+2x-2=0\\ \Leftrightarrow x\left(x-1\right)+2\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x+2\right)\)

           \(\Leftrightarrow\left[\begin{array}{nghiempt}x-1=0\\x+2=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=1\left(loại\right)\\x=-2\end{array}\right.\)

Thay x=-2 vào A ta có

\(A=\frac{-2}{-2+1}=\frac{-2}{-1}=2\)

4 tháng 8 2016

a)\(A=\frac{x+1}{x^2-2x+1}:\left(\frac{1}{x^2-x}+\frac{1}{x-1}\right)\left(ĐK:x\ne0;x\ne1\right)\)

\(=\frac{x+1}{\left(x-1\right)^2}:\left(\frac{1}{x\left(x-1\right)}+\frac{1}{x-1}\right)\)

\(=\frac{x+1}{\left(x-1\right)^2}:\frac{1+x}{x\left(x-1\right)}\)

\(=\frac{x+1}{\left(x-1\right)^2}\cdot\frac{x\left(x-1\right)}{1+x}\)

\(=\frac{x}{x-1}\)

b)Có:\(x^2+x-2=0\)

\(\Leftrightarrow x^2-x+2x-2=0\)

\(\Leftrightarrow x\left(x-1\right)+2\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x-1=0\\x-2=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=1\left(loại\right)\\x=2\end{array}\right.\)

Thay x=2 vào A ta được:

\(A=\frac{2}{2-1}=2\)

4 tháng 8 2016

Bài này bạn đăng r và mink cx làm r

18 tháng 8 2020

a) ĐKXĐ : \(x\ne0\);\(x\ne2;-2\)

 A=\(\left(\frac{1}{x-2}-\frac{2x}{4-x^2}+\frac{1}{2+x}\right).\left(\frac{2}{x}-1\right)\)

       =\(\left(\frac{1}{x-2}+\frac{2x}{x^2-4}+\frac{1}{x+2}\right).\left(\frac{2}{x}-\frac{x}{x}\right)\)

       =\(\frac{x+2+2x+x-2}{\left(x+2\right)\left(x-2\right)}.\frac{2-x}{x}\)

       =\(\frac{4x}{\left(x+2\right)\left(x-2\right)}.\frac{-\left(x-2\right)}{x}\)

       =  \(\frac{-4}{x+2}\)

b) Ta có : \(2x^2+x=0\)

        \(\Leftrightarrow x\left(2x+1\right)=0\)

        \(\Leftrightarrow\orbr{\begin{cases}x=0\left(ktm\right)\\x=\frac{-1}{2}\end{cases}}\left(tm\right)\)

Để A = -1/2 thì 

\(\Leftrightarrow\frac{-4}{x+2}=\frac{-1}{2}\)

\(\Leftrightarrow-\left(x+2\right)=-8\)

\(\Leftrightarrow x+2=8\)

\(\Leftrightarrow x=6\)

c) Để A =0,5 thì 

\(\frac{-4}{x+2}=0,5\)

\(\Leftrightarrow-8=x+2\)

\(\Leftrightarrow x=-10\)

d) Để A \(\inℤ\)thì

\(-4⋮x+2\)

\(\Leftrightarrow x+2\inƯ\left(-4\right)\)

\(\Leftrightarrow x+2\in\left\{1;2;4;-1;-2;-4\right\}\)

Lập bảng giá trị 

     x+2-11-22-44
              x-3-1-40-62

Mà \(x\ne0\)và \(x\ne2;-2\)

\(\Rightarrow x\in\left\{-1;-3;-4;-6\right\}\)

10 tháng 4 2017

1.  A = -4 phần x+2

2.  2x^2 + x = 0 => x = 0 hoặc x = -1/2

    Với x = 0 thì A = -2

    Với x = -1/2 thì A = -8/3

3.   A = 1/2 =>  -4 phần x + 2  = 1/2

                  <=> -8 = x + 2 

                   <=> x = -10

4.   A nguyên dương => A > 0

                               => -4 phần x + 2 > 0

      Do -4 < 0 nên -4 phần x + 2 > 0 khi x + 2 < 0

                                                        => x < -2

8 tháng 12 2019

a)Với  x \(\ne\)-1

Ta có: x2 + x = 0

=> x(x + 1) = 0

=> \(\orbr{\begin{cases}x=0\\x+1=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=0\\x=-1\left(ktm\right)\end{cases}}\)

Với x = 0 => A = \(\frac{0-3}{0+1}=-3\)

b) Ta có: B = \(\frac{3}{x-3}+\frac{6x}{9-x^3}+\frac{x}{x+3}\)

B = \(\frac{3\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}+\frac{6x}{\left(x-3\right)\left(x+3\right)}+\frac{x\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}\)

B = \(\frac{3x+9+6x+x^2-3x}{\left(x-3\right)\left(x+3\right)}\)

B = \(\frac{x^2+6x+9}{\left(x-3\right)\left(x+3\right)}\)

B = \(\frac{\left(x+3\right)^2}{\left(x-3\right)\left(x+3\right)}\)

B = \(\frac{x+3}{x-3}\)

c)  Với x \(\ne\)\(\pm\)3; x \(\ne\)-1

Ta có: P = AB = \(\frac{x-3}{x+1}\cdot\frac{x+3}{x-3}=\frac{x+3}{x+1}=\frac{\left(x+1\right)+2}{x+1}=1+\frac{2}{x+1}\)

Để P \(\in\)Z <=> 2 \(⋮\)x + 1

<=> x + 1 \(\in\)Ư(2) = {1; -1; 2; -2}

<=> x \(\in\){0; -2; 1; -3}

1 tháng 3 2020

a) Ta thấy x=-2 thỏa mãn ĐKXĐ của B.

Thay x=-2 và B ta có :

\(B=\frac{2\cdot\left(-2\right)+1}{\left(-2\right)^2-1}=\frac{-3}{3}=-1\)

b) Rút gọn : 

\(A=\frac{3x+1}{x^2-1}-\frac{x}{x-1}\)

\(=\frac{3x+1-x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\)

\(=\frac{-x^2+2x+1}{\left(x-1\right)\left(x+1\right)}\)

Xấu nhỉ ??