Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. a) \(A=\left(\dfrac{\sqrt{x}-1+x-\sqrt{x}}{\left(x-\sqrt{x}\right)\left(\sqrt{x}-1\right)}\right).\dfrac{2\sqrt{x}}{\sqrt{x}+1}\)ĐK x\(\ne\)0,1
\(=\dfrac{\left(x-1\right)2\sqrt{x}}{\left(x-\sqrt{x}\right)\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{\left(x-1\right)2\sqrt{x}}{\left(x-\sqrt{x}\right)\left(x-1\right)}=\dfrac{2\sqrt{x}}{x-\sqrt{x}}\)
b) A<-1 <=> \(\dfrac{2\sqrt{x}}{x-\sqrt{x}}< -1\)\(\Leftrightarrow\dfrac{2\sqrt{x}}{x-\sqrt{x}}+1< 0\)
\(\Leftrightarrow\dfrac{2\sqrt{x}+x-\sqrt{x}}{x-\sqrt{x}}< 0\)\(\Leftrightarrow\dfrac{x+\sqrt{x}}{x-\sqrt{x}}< 0\)
\(\Leftrightarrow x-\sqrt{x}< 0\) (vì \(x+\sqrt{x}>0\left(\forall x>0\right)\))
\(\Leftrightarrow x< \sqrt{x}\Leftrightarrow x^2< x\Leftrightarrow x^2-x< 0\)
\(\Leftrightarrow x\in\left(0;1\right)\Leftrightarrow0< x< 1\)
a, Mk làm hơi tắt chút bạn thông cảm nha . mk vội ý mà
\(A=\left(\dfrac{\sqrt{x}+1}{x-2\sqrt{x}}-\dfrac{1}{\sqrt{x}-2}\right).\left(x-3\sqrt{x}+2\right)\)
\(A=\dfrac{\sqrt{x}+1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}.\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)\)
\(A=\dfrac{1}{\sqrt{x}\left(\sqrt{x}-2\right)}\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)=\dfrac{\sqrt{x}-1}{\sqrt{x}}\)
Câu c : \(A\in Z\Leftrightarrow\dfrac{\sqrt{x}-1}{\sqrt{x}}\in Z\Leftrightarrow1-\dfrac{1}{\sqrt{x}}\in Z\)
Để : \(1-\dfrac{1}{\sqrt{x}}\in Z\) thì \(\sqrt{x}\inƯ\left(1\right)\)
\(\Rightarrow\left\{{}\begin{matrix}\sqrt{x}=1\\\sqrt{x}=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\x\in\varnothing\end{matrix}\right.\)
Vậy \(x=1\)
2
\(A=\sqrt{1-6x+9x^2}+\sqrt{9x^2-12x+4}\)
A= \(\sqrt{9x^2-6x+1}+\sqrt{9x^2-12x+4}\)
A= \(\sqrt{\left(3x-1\right)^2}+\sqrt{\left(3x-2\right)^2}=\left|3x-1\right|+\left|3x-2\right|\)
ta có |3x-1|+|3x-2|=|3x-1|+|2-3x| ≥ |3x-1+2-3x|=1
=> A ≥ 1
=> Min A =1 khi 1/3 ≤ x ≤ 2/3
\(P=\left(\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(x+1\right)}+\frac{1}{x+1}\right).\frac{x+1}{\sqrt{x}-1}\)ĐK x>=0 x khác -1
=\(\frac{\sqrt{x}+1}{x+1}.\frac{x+1}{\sqrt{x}-1}=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
b/ x =\(\frac{2+\sqrt{3}}{2}=\frac{4+2\sqrt{3}}{4}=\frac{3+2\sqrt{3}+1}{4}=\frac{\left(\sqrt{3}+1\right)^2}{4}\)
\(\Rightarrow\sqrt{x}=\frac{\sqrt{3}+1}{2}\)
Em thay vào tính nhé!
c) với x>1
A=\(\frac{\sqrt{x}+1}{\sqrt{x}-1}.\sqrt{x}=\frac{x+\sqrt{x}}{\sqrt{x}-1}=\sqrt{x}+2+\frac{2}{\sqrt{x}-1}=\sqrt{x}-1+\frac{2}{\sqrt{x}-1}+3\)
Áp dụng bất đẳng thức Cosi
A\(\ge2\sqrt{2}+3\)
Xét dấu bằng xảy ra ....
a: \(Q=\dfrac{3x+3\sqrt{x}-3-x+2\sqrt{x}-1-x+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{x+5\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
b: |2x-5|=3
=>2x-5=3 hoặc 2x-5=-3
=>2x=2 hoặc 2x=8
=>x=1(loại) hoặc x=4(nhận)
Khi x=4 thì \(Q=\dfrac{4+5\cdot2}{\left(2+2\right)\left(2-1\right)}=\dfrac{14}{4}=3.5\)
c: Để Q=3 thì \(3x+3\sqrt{x}-6=x+5\sqrt{x}\)
=>\(2x-2\sqrt{x}-6=0\)
hay \(x=\left(\dfrac{1+\sqrt{13}}{2}\right)^2\)
a: ĐKXĐ: x>0; x<>1
\(P=\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}}\right):\dfrac{1}{x+\sqrt{x}}\)
\(=\dfrac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{1}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
b: Để P<0 thì \(\sqrt{x}-1< 0\)
=>0<x<1
c: Để P là số nguyên thì \(\sqrt{x}-1+2⋮\sqrt{x}-1\)
\(\Leftrightarrow\sqrt{x}-1\in\left\{1;-1;2\right\}\)
hay \(x\in\left\{4;0;9\right\}\)
a: \(A=\left(\dfrac{1}{\sqrt{x}+1}-\dfrac{2\sqrt{x}-2}{\left(x-1\right)\left(\sqrt{x}+1\right)}\right):\dfrac{\sqrt{x}+1-x}{x-1}\)
\(=\dfrac{x-1-2\sqrt{x}+2}{\left(x-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{x-1}{-x+\sqrt{x}+1}\)
\(=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)\left(-x+\sqrt{x}+1\right)}\)
b: Để A là số nguyên thì \(\left(\sqrt{x}-1\right)^2⋮\left(\sqrt{x}+1\right)\left(-x+\sqrt{x}+1\right)\)
=>x=0
1: \(P=\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}+1}{2}=\dfrac{\sqrt{x}+1}{2\sqrt{x}}\)
2: Để P là số nguyên thì \(2\sqrt{x}+2⋮2\sqrt{x}\)
\(\Leftrightarrow2\sqrt{x}=2\)
hay x=1(nhận)
3: \(P-\dfrac{1}{2}=\dfrac{\sqrt{x}+1}{2\sqrt{x}}-\dfrac{1}{2}=\dfrac{2\sqrt{x}+2-\sqrt{x}}{2\sqrt{x}}=\dfrac{\sqrt{x}+2}{2\sqrt{x}}>0\)
=>P>1/2