K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 2 2020

a) \(ĐKXĐ:x\ne\pm4;x\ne-2\)

\(P=\left(\frac{8}{x^2-16}+\frac{1}{x+4}\right):\frac{1}{x^2-2x-8}\)

\(\Leftrightarrow P=\left(\frac{8}{\left(x-4\right)\left(x+4\right)}+\frac{1}{x+4}\right):\frac{1}{\left(x-4\right)\left(x+2\right)}\)

\(\Leftrightarrow P=\frac{8+x-4}{\left(x-4\right)\left(x+4\right)}:\frac{1}{\left(x-4\right)\left(x+2\right)}\)

\(\Leftrightarrow P=\frac{x+4}{\left(x-4\right)\left(x+4\right)}:\frac{1}{\left(x-4\right)\left(x+2\right)}\)

\(\Leftrightarrow P=\frac{1}{x-4}.\left(x-4\right)\left(x+2\right)\)

\(\Leftrightarrow P=\frac{\left(x-4\right)\left(x+2\right)}{\left(x-4\right)}\)

\(P=x+2\)

b) Ta có :

\(x^2-9x+20=0\)

\(\Leftrightarrow x^2-4x-5x+20=0\)

\(\Leftrightarrow x\left(x-4\right)-5\left(x-4\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(x-4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-5=0\\x-4=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=5\\x=4\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}P=x+2=5+2=7\\P=x+2=4+2=6\end{cases}}\)

Vậy \(P\in\left\{7;6\right\}\)

23 tháng 12 2017

\(P=\left(\frac{8}{\left(x+4\right)\left(x-4\right)}+\frac{1}{x+4}\right):\frac{1}{x^2-2x-8}\)

\(P=\left(\frac{8}{\left(x+4\right)\left(x-4\right)}+\frac{x-4}{\left(x-4\right)\left(x+4\right)}\right)\cdot\frac{x^2-2x-8}{1}\)

\(P=\left(\frac{x+4}{\left(x+4\right)\left(x-4\right)}\right)\cdot x^2-2x-8\)

\(P=\frac{1}{x-4}\cdot x^2-2x-8\)

P\(P=\frac{x^2+2x-4x+8}{x-4}\)

\(P=\frac{x\left(x+2\right)-4\left(x+2\right)}{x-4}\)

\(P=\frac{\left(x-4\right)\left(x+2\right)}{x-4}\)

\(P=x+2\)

14 tháng 1 2018

2 ,\(x^2-9x+20=0\)

\(\Rightarrow x^2-4x-5x+20=0\)

\(\Rightarrow x\left(x-4\right)-5\left(x-4\right)=0\)

\(\Rightarrow\left(x-5\right)\left(x-4\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-5=0\\x-4=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=5\\x=4\end{cases}}\)

\(\orbr{\begin{cases}x=5\Rightarrow\\x=4\Rightarrow\end{cases}}\orbr{\begin{cases}P=7\\P=6\end{cases}}\)

9 tháng 2 2017

a/ ĐKXĐ ....

A=\(\frac{1}{x\left(x-1\right)}+\frac{1}{\left(x-1\right)\left(x-2\right)}+\frac{1}{\left(x-2\right)\left(x-3\right)}+\frac{1}{\left(x-3\right)\left(x-4\right)}+\frac{1}{\left(x-4\right)\left(x-5\right)}\)

=\(\frac{1}{x-1}-\frac{1}{x}+\frac{1}{x-2}-\frac{1}{x-1}+...+\frac{1}{x-5}-\frac{1}{x-4}\)

=\(\frac{1}{x}-\frac{1}{x-5}\)

=\(-\frac{5}{x^2-5x}\)

b/ \(x^3-x+2=0\Leftrightarrow\left(x+1\right)\left(\left(x-1\right)^2+1\right)=0\)

<=> x=-1, thay vào tính nốt

10 tháng 4 2017

1.  A = -4 phần x+2

2.  2x^2 + x = 0 => x = 0 hoặc x = -1/2

    Với x = 0 thì A = -2

    Với x = -1/2 thì A = -8/3

3.   A = 1/2 =>  -4 phần x + 2  = 1/2

                  <=> -8 = x + 2 

                   <=> x = -10

4.   A nguyên dương => A > 0

                               => -4 phần x + 2 > 0

      Do -4 < 0 nên -4 phần x + 2 > 0 khi x + 2 < 0

                                                        => x < -2

17 tháng 12 2017

a, ĐKXĐ : x khác -4;4;-2

P =[ 8+x-4/(x-4).(x+4) ] : 1/(x+2).(x-4)

   = x+4/(x+4).(x-4)   . (x+2).(x-4)

   = x+2

b, x^2-9x+20 = 0

<=> (x^2-4x)-(5x-20)=0

<=> (x-4).(x-5)=0

<=> x-4=0 hoặc x-5=0

<=> x=4 hoặc x=5

+, Với x=4 thì P = 4+2 = 6

+, Với x=5 thì P = 5+2 = 7

k mk nha

10 tháng 12 2017

Ta có :

\(P=\left(\dfrac{8}{x^2-16}+\dfrac{1}{x+4}\right):\dfrac{1}{x^2-2x-8}\)

\(P=\left(\dfrac{8+x-4}{\left(x+4\right)\left(x-4\right)}\right):\dfrac{1}{\left(x+2\right)\left(x-4\right)}\)

\(P=\dfrac{x+4}{\left(x+4\right)\left(x-4\right)}:\dfrac{1}{\left(x+2\right)\left(x-4\right)}\)

\(P=\dfrac{1}{x-4}.\left(x+2\right)\left(x-4\right)\)

\(P=\dfrac{\left(x+2\right)\left(x-4\right)}{\left(x-4\right)}\)

\(P=x+2\)

2 . Ta có :

\(x^2-9x+20=0\Leftrightarrow\left(x-4\right)\left(x-5\right)=0\Rightarrow\left[{}\begin{matrix}x=4\\x=5\end{matrix}\right.\)

Thay \(\left[{}\begin{matrix}x=4\\x=5\end{matrix}\right.\) vào biểu thức \(P=x+2\) ta được :

\(\left[{}\begin{matrix}4+2=6\\5+2=7\end{matrix}\right.\)

Kết luận __________________________________

10 tháng 12 2017

ĐKXĐ của phân thức là : \(\left\{{}\begin{matrix}x^2-16\ne0\\x+4\ne0\\x^2-2x-8\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(x-4\right)\left(x+4\right)\ne0\\x\ne-4\\\left(x-4\right)\left(x+2\right)\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne4\\x\ne-4\\x\ne-2\end{matrix}\right.\)

\(P=\left(\dfrac{8}{x^2-16}+\dfrac{1}{x+4}\right):\dfrac{1}{x^2-2x-8}\) \(=\left(\dfrac{8}{\left(x-4\right)\left(x+4\right)}+\dfrac{1}{x+4}\right).\left(x^2-2x-8\right)\) \(=\dfrac{8+x-4}{\left(x-4\right)\left(x+4\right)}.\left(x^2-4x+2x-8\right)\) \(=\dfrac{x+4}{\left(x-4\right)\left(x+4\right)}.\left(x-4\right)\left(x+2\right)\) \(=x+2\) + Tính giá trị của P tại x2 - 9x + 20 = 0 \(x^2-9x+20=0\) \(\Rightarrow x^2-4x-5x+20=0\) \(\Rightarrow\left(x^2-4x\right)-\left(5x-20\right)=0\) \(\Rightarrow x\left(x-4\right)-5\left(x-4\right)=0\) \(\Rightarrow\left(x-4\right)\left(x-5\right)=0\) \(\Rightarrow\left[{}\begin{matrix}x-4=0\\x-5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=4\left(kot/m\right)\\x=5\left(t/m\right)\end{matrix}\right.\) Thay x = 5 vào biểu thức P ,có : \(5+2=7\) Vậy tại x= 5 giá trị của P là 7

8 tháng 12 2019

a)Với  x \(\ne\)-1

Ta có: x2 + x = 0

=> x(x + 1) = 0

=> \(\orbr{\begin{cases}x=0\\x+1=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=0\\x=-1\left(ktm\right)\end{cases}}\)

Với x = 0 => A = \(\frac{0-3}{0+1}=-3\)

b) Ta có: B = \(\frac{3}{x-3}+\frac{6x}{9-x^3}+\frac{x}{x+3}\)

B = \(\frac{3\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}+\frac{6x}{\left(x-3\right)\left(x+3\right)}+\frac{x\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}\)

B = \(\frac{3x+9+6x+x^2-3x}{\left(x-3\right)\left(x+3\right)}\)

B = \(\frac{x^2+6x+9}{\left(x-3\right)\left(x+3\right)}\)

B = \(\frac{\left(x+3\right)^2}{\left(x-3\right)\left(x+3\right)}\)

B = \(\frac{x+3}{x-3}\)

c)  Với x \(\ne\)\(\pm\)3; x \(\ne\)-1

Ta có: P = AB = \(\frac{x-3}{x+1}\cdot\frac{x+3}{x-3}=\frac{x+3}{x+1}=\frac{\left(x+1\right)+2}{x+1}=1+\frac{2}{x+1}\)

Để P \(\in\)Z <=> 2 \(⋮\)x + 1

<=> x + 1 \(\in\)Ư(2) = {1; -1; 2; -2}

<=> x \(\in\){0; -2; 1; -3}