\(\frac{2\sqrt{a}-9}{a-5\sqrt{a}+6}-\frac{\sqrt{a}+3}{\sqrt{a}-2}+\frac{2\sqrt...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2019

\(a,đkxđ\Leftrightarrow\hept{\begin{cases}x\ge0\\x\ne4\end{cases}}\)

\(A=\frac{\sqrt{x}}{\sqrt{x}-2}+\frac{3}{\sqrt{x}+2}-\frac{9\sqrt{x}-10}{x-4}.\)

\(=\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{3\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)\(-\frac{9\sqrt{x}-10}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{x+2\sqrt{x}+3\sqrt{x}-6-9\sqrt{x}+10}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{x-4\sqrt{x}-4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{\left(\sqrt{x}-2\right)^2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{\sqrt{x}-2}{\sqrt{x}+2}\)

\(b,x=4-2\sqrt{3}=3-2\sqrt{3}+1=\left(\sqrt{3}-1\right)^2\)

\(\Rightarrow x=\sqrt{3}-1\)

\(\Rightarrow A=\frac{\sqrt{3}-1-2}{\sqrt{3}-1+2}=\frac{\sqrt{3}-3}{\sqrt{3}-1}\)

\(b,A=\frac{\sqrt{x}-2}{\sqrt{x}+2}=\frac{\sqrt{x}+2-4}{\sqrt{x}+2}\)\(=1-\frac{4}{\sqrt{x}+2}\)

\(A\in Z\Leftrightarrow1-\frac{4}{\sqrt{x}+2}\in Z\Rightarrow\frac{4}{\sqrt{x}+2}\in Z\)

\(\Rightarrow\sqrt{x}+2\inƯ_4\)

Mà \(Ư_4=\left\{\pm1;\pm2;\pm4\right\}\)Nhưng \(\sqrt{x}+2\ge2\)\(\Rightarrow\sqrt{x}+2\in\left\{2;4\right\}\)

\(Th1:\sqrt{x}+2=2\Rightarrow\sqrt{x}=0\Rightarrow x=0\)

\(Th2:\sqrt{x}+2=4\Rightarrow\sqrt{x}=2\Rightarrow x=4\)

\(KL:x\in\left\{0;4\right\}\)

2 tháng 11 2019

a) \(A=\left(\frac{x+3}{x-9}+\frac{1}{\sqrt{x}+3}\right):\frac{\sqrt{x}}{\sqrt{x}-3}\)

\(=\left[\frac{x+3+\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right]:\frac{\sqrt{x}}{\sqrt{x}-3}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}}\)

\(=\frac{\sqrt{x}+1}{\sqrt{x}+3}\)

c) để A>1/3 

\(\Rightarrow\frac{\sqrt{x}+3-2}{\sqrt{x}+3}>\frac{1}{3}\)

\(\Rightarrow\frac{2}{\sqrt{x}+3}>\frac{2}{3}\)

\(\Rightarrow\sqrt{x}+3>3\)

\(\Rightarrow x>0\)

23 tháng 7 2018

a) \(ĐKXĐ:x\ne4;x\ne9\)

b) \(A=\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\)

        \(=\frac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{2\sqrt{x}+1}{\sqrt{x}-3}\)

         \(=\frac{2\sqrt{x}-9-\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)+\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

          \(=\frac{2\sqrt{x}-9-x+9+2x-3\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\frac{-\sqrt{x}+x-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

           \(=\frac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\frac{\sqrt{x}+1}{\sqrt{x}-3}\)

c) Ta có: \(A=\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\left(\sqrt{x}-3\right)+4}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)

\(\Rightarrow\sqrt{x}-3\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\) (ĐK: x thuộc Z)

\(\sqrt{x}-3\)1-12-24-4
\(\sqrt{x}\)42517-1
x2\(\sqrt{2}\)\(\sqrt{5}\)\(\sqrt{1}\)\(\sqrt{7}\)\(\varnothing\)

Vậy để A thuộc Z khi x = {2;\(\sqrt{2};\sqrt{5};\sqrt{1};\sqrt{7}\) }

7 tháng 7 2017

a. ĐK \(\hept{\begin{cases}a\ge0\\a\ne4\\a\ne9\end{cases}}\)

P=\(\frac{2\sqrt{a}-9-\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)+\left(2\sqrt{a}+1\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-3\right)}\)

\(=\frac{2\sqrt{a}-9-a+9+2a-4\sqrt{a}+\sqrt{a}-2}{\left(\sqrt{a}-3\right)\left(\sqrt{a}-2\right)}\)

\(=\frac{a-\sqrt{a}-2}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-3\right)}=\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}-3\right)\left(\sqrt{a}-2\right)}=\frac{\sqrt{a}+1}{\sqrt{a}-3}\)

b. P = \(\frac{\sqrt{a}+1}{\sqrt{a}-3}=1+\frac{4}{\sqrt{a}-3}\)

P nguyên \(\sqrt{a}-3\inƯ\left(4\right)\Rightarrow\sqrt{a}-3\in\left\{-4;-2;-1;1;2;4\right\}\)

\(\Rightarrow\sqrt{a}\in\left\{1;2;4;5;7\right\}\Rightarrow a\in\left\{1;4;16;25;49\right\}\)

c. \(P< 1\Rightarrow P-1< 0\Rightarrow\frac{\sqrt{a}+1-\sqrt{a}+3}{\sqrt{a}-3}< 0\Rightarrow\frac{4}{\sqrt{a}-3}< 0\)

\(\Rightarrow0\le a< 9\)và \(a\ne4\)

đè hinh như là 6\(\sqrt{x}\) nhi bạn

29 tháng 7 2019

\(a,A=\frac{\sqrt{x}}{\sqrt{x}-2}+\frac{3}{\sqrt{x}+2}-\frac{9\sqrt{x}-10}{x-4}\left(x\ge0;x\ne16\right)\)

\(=\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{3\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\frac{9\sqrt{x}-10}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{x+2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{3\sqrt{x}-6}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\frac{9\sqrt{x}-10}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{x+2\sqrt{x}+3\sqrt{x}-6-9\sqrt{x}+10}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{x-4\sqrt{x}+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\frac{\left(\sqrt{x}\right)^2-2.\sqrt{x}.2+2^2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\frac{\left(\sqrt{x}-2\right)^2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\frac{\sqrt{x}-2}{\sqrt{x}+2}\)

Vây...

\(b,\)Ta có:\(x=4-2\sqrt{3}=\left(1-\sqrt{3}\right)^2\)

Thay \(x=\left(1-\sqrt{3}\right)^2\)vào A ta được:

\(A=\frac{\sqrt{\left(1-\sqrt{3}\right)^2}-2}{\sqrt{\left(1-\sqrt{3}\right)^2}+2}=\frac{\sqrt{3}-1-2}{\sqrt{3}-1+2}=\frac{\sqrt{3}-3}{\sqrt{3}-1}=\frac{-\sqrt{3}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}=-\sqrt{3}\)