Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:
Để A là phân số <=> n + 4 \(\ne\)0 <=> n \(\ne\)-4
b) Với : + )n = 1 => \(A=\frac{1+5}{1+4}=\frac{6}{5}\)
+) n = -1 => \(A=\frac{-1+5}{-1+4}=\frac{4}{3}\)
c) Ta có: \(A=\frac{n+5}{n+4}=\frac{\left(n+4\right)+1}{n+4}=1+\frac{1}{n+4}\)
Để A \(\in\)Z <=> 1 \(⋮\)n + 4
<=> n + 4 \(\in\)Ư(1) = {1; -1}
Lập bảng :
n + 4 | 1 | -1 |
n | -3 | -5 |
Vậy ....
1a) Để A là phân số thì n \(\ne\)- 4 ; n
b) + Khi n = 1
=> \(A=\frac{n+5}{n+4}=\frac{1+5}{1+4}=\frac{6}{5}\)
+ Khi n = -1
=> \(A=\frac{n+5}{n+4}=\frac{-1+5}{-1+4}=\frac{4}{3}\)
c) Để \(A\inℤ\)
=> \(n+5⋮n+4\)
=> \(n+4+1⋮n+4\)
Ta có : Vì \(n+4⋮n+4\)
=> \(1⋮n+4\)
=> \(n+4\inƯ\left(1\right)\)
=> \(n+4\in\left\{\pm1\right\}\)
Lập bảng xét các trường hợp
\(n+4\) | \(1\) | \(-1\) |
\(n\) | \(-3\) | \(-5\) |
Vậy \(A\inℤ\Leftrightarrow n\in\left\{-3;-5\right\}\)
Cho biểu thức \(B=\frac{4}{n-3}\)
Để \(\frac{4}{n-3}\)là phân số => \(n-3\inℤ\)
=> \(n\inℤ\)
b) n = -2
Thay n = -2 vào B ta được : \(B=\frac{4}{n-3}=\frac{4}{-2-3}=\frac{4}{-5}=\frac{-4}{5}\)
n = 0
Thay n = 0 vào B ta được : \(B=\frac{4}{n-3}=\frac{4}{0-3}=\frac{4}{-3}=\frac{-4}{3}\)
n = 10
Thay n = 10 vào B ta được : \(B=\frac{4}{n-3}=\frac{4}{10-3}=\frac{4}{7}\)
c) Để B có giá trị nguyên
=> \(4⋮n-3\)
=> \(n-3\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
Ta có bảng sau
n-3 | 1 | -1 | 2 | -2 | 4 | -4 |
n | 4 | 2 | 5 | 1 | 7 | -1 |
Vậy \(n\in\left\{\pm1;2;4;5;7\right\}\)thì B có giá trị nguyên
a) Để B là phân số thì số nguyên phải là số khác 0 là ko thuộc Ư(4)
MẤY CON KIA TỪ TỪ MK LM NỐT , NHỚ K CHO MK NHÉ
Cho biểu thức A=2n-3/n-1
a,Tìm điều kiện để a là phân số
b, Với giá trị nào của n thì a là số nguyên
a: Để A là phân số thì n-2<>0
=>n<>2
Khi n=-2 thì \(A=\dfrac{2\cdot\left(-2\right)+1}{-2-2}=\dfrac{-3}{-4}=\dfrac{3}{4}\)
b: Để A nguyên thì 2n+1 chia hết cho n-2
=>2n-4+5 chia hết cho n-2
=>\(n-2\in\left\{1;-1;5;-5\right\}\)
=>\(n\in\left\{3;1;7;-3\right\}\)
a) Để A là p/số
\(\Rightarrow n+3\ne0\)
\(\Rightarrow n\ne-3\)
b) Để\(A\inℤ\)
\(\Rightarrow n-3⋮n+3\)
\(\Leftrightarrow n-3=n+3-6\)
\(\Rightarrow6⋮n+3\)
\(\Rightarrow n+3\in\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
\(\Rightarrow n\in\left\{-2;-4;-1;-5;0;-6;3;-9\right\}\)
Vì :\(n\inℕ\)
\(\Rightarrow n\in\left\{0;3\right\}\)
c)\(\frac{n-3}{n+3}=\frac{n+3-6}{n+3}=1-\frac{6}{n+3}\)
Để A tối giản
\(\LeftrightarrowƯCLN\left(n-3;n+3\right)=1\)
\(\LeftrightarrowƯCLN\left(-6;n-3\right)=1\)
\(\Rightarrow n-3⋮̸\)\(-6\)
\(\Rightarrow n-3\ne6k\)
\(\Rightarrow n\ne6k+3\)
n+3/3=n/3+1 (1)
ta có tử càng lớn thì ps càng lớn
vì k co số tn lớn nhất nên n thuộc rỗng
b, theo (1) ta có
vì 1 là stn nên để a là stn thì n/3 cũng phải là số tn
để n/3 là stn thì n chia hết cho 3
=> n thuộc Ư(3)
a: ĐKXĐ: n<>3
Khi n=-2020 thì \(P=\dfrac{-2020+1}{-2020-3}=\dfrac{2019}{2023}\)
b: \(P=\dfrac{n-3+4}{n-3}=1+\dfrac{4}{n-3}\)
Để P lớn nhất thì n-3=1
=>n=4