Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hướng dẫn + lời giải
\(A=-1-2+3+4+..-2013-2014+2015+2016\)
A có 2016 số hạng
quy luật (2 trừ đến 2 cộng)
A chia hết cho 4 =>ghép 4 số hạng
\(B=\left(-1-2+3+4\right)+\left(-5-6+7+8\right)+...+\left(-2013-2014+2015+2016\right)\\ \)
\(C=4+4+4+...+4\)
số số hạng của C số số hạng của A chia 4
\(\dfrac{2016}{4}=504\)
Vậy C=4.504=2016
mình cố tình đặt A,B,C để bạn dẽ hiểu bản chất nó vẫn là A
bài có n! cách làm
cách này hứơng bạn đi đến cái tổng quát --> có thể làm được toán lớp 11
\(A=\dfrac{2013}{1}+\dfrac{2012}{2}+\dfrac{2011}{3}+...+\dfrac{1}{2013}\)
\(=\left(\dfrac{2012}{2}+1\right)+\left(\dfrac{2011}{3}+1\right)+...+\left(\dfrac{1}{2013}+1\right)+1\)
\(=\dfrac{2014}{2}+\dfrac{2014}{3}+...+\dfrac{2014}{2013}+\dfrac{2014}{2014}\)
\(=2014\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2013}+\dfrac{1}{2014}\right)\)
\(P=\dfrac{2013}{2}+\dfrac{2013}{3}+...+\dfrac{2013}{2014}=2013\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2014}\right)\)
\(\Rightarrow\dfrac{P}{A}=\dfrac{2013\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2014}\right)}{2014\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2014}\right)}=\dfrac{2013}{2014}\)
Vậy \(\dfrac{P}{A}=\dfrac{2013}{2014}\)
5\(\dfrac{8}{17}\):x + (-\(\dfrac{1}{17}\)) : x + 3\(\dfrac{1}{17}\) : 17\(\dfrac{1}{3}\)= \(\dfrac{4}{17}\)
\(\dfrac{93}{17}\).\(\dfrac{1}{x}\) + (-\(\dfrac{1}{17}\)) .\(\dfrac{1}{x}\) +\(\dfrac{3}{17}\)= \(\dfrac{4}{17}\)
\(\dfrac{1}{x}\).\(\dfrac{92}{17}\)=\(\dfrac{1}{17}\)
\(\dfrac{1}{1.4}\)+\(\dfrac{1}{4.7}\)+\(\dfrac{1}{7.10}\)+...+\(\dfrac{1}{x.\left(x+3\right)}\)=\(\dfrac{6}{19}\)
1/ \(B=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{8^2}\)
\(B< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{7.8}\)
\(B< \dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{7}-\dfrac{1}{8}\)
\(B< \dfrac{1}{1}-\dfrac{1}{8}< 1\)
\(B< 1\)
2/ \(B=\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{4}\right)...\left(1-\dfrac{1}{20}\right)\)
\(B=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot...\cdot\dfrac{19}{20}\)
\(B=\dfrac{1\times2\times3\times...\times19}{2\times3\times4\times...\times20}\)
\(B=\dfrac{1}{20}\)
3/ \(A=\dfrac{7}{4}\cdot\left(\dfrac{3333}{1212}+\dfrac{3333}{2020}+\dfrac{3333}{3030}+\dfrac{3333}{4242}\right)\)
\(A=\dfrac{7}{4}\cdot\left(\dfrac{33}{12}+\dfrac{33}{20}+\dfrac{33}{30}+\dfrac{33}{42}\right)\)
\(A=\dfrac{7}{4}\cdot\left(\dfrac{33}{3.4}+\dfrac{33}{4.5}+\dfrac{33}{5.6}+\dfrac{33}{6.7}\right)\)
\(A=\dfrac{7}{4}.33.\left(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}\right)\)
\(A=\dfrac{231}{4}.\left(\dfrac{1}{3}-\dfrac{1}{7}\right)\)
\(A=\dfrac{231}{4}\cdot\dfrac{4}{21}\)
\(A=11\)
4/ A phải là \(\dfrac{2011+2012}{2012+2013}\)
Ta có : \(B=\dfrac{2011}{2012}+\dfrac{2012}{2013}>\dfrac{2011}{2013}+\dfrac{2012}{2013}=\dfrac{2011+2012}{2013}>\dfrac{2011+2012}{2012+2013}=A\)
\(\Rightarrow B>A\)
A= \(\dfrac{-3}{5}-\dfrac{-4}{5}+\dfrac{-9}{10}\)
A = \(\dfrac{-7}{10}\)
\(A=1+\dfrac{\dfrac{\left(1+2\right).2}{2}}{2}+\dfrac{\dfrac{\left(1+3\right).3}{2}}{3}+...+\dfrac{\dfrac{\left(1+2013\right).2013}{2}}{2013}\)
\(A=1+\dfrac{\dfrac{3.2}{2}}{2}+\dfrac{\dfrac{4.3}{2}}{3}+...+\dfrac{\dfrac{2014.2013}{2}}{2013}\)
\(A=1+\dfrac{3}{2}+\dfrac{2.3}{3}+...+\dfrac{1007.2013}{2013}\)
\(A=1+\dfrac{3}{2}+2+\dfrac{5}{2}...+1007\)
\(2A=2+3+4+5+6+...+2012+2013+2014\)
\(2A=\dfrac{\left(2+2014\right).2013}{2}\)
\(A=\dfrac{2016.2013}{4}=504.2013\)
\(B=\dfrac{-2}{1.3}+\dfrac{-2}{2.4}+...+\dfrac{-2}{2012.2014}+\dfrac{-2}{2013.2015}\)
\(-B=\dfrac{2}{1.3}+\dfrac{2}{2.4}+...+\dfrac{2}{2012.2014}+\dfrac{2}{2013.2015}\)
\(-B=\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{2013.2015}\right)+\left(\dfrac{2}{2.4}+\dfrac{2}{4.6}+...+\dfrac{2}{2012.2014}\right)\)
\(-B=\left(\dfrac{3-1}{1.3}+\dfrac{5-3}{3.5}+...+\dfrac{2015-2013}{2013.2015}\right)+\left(\dfrac{4-2}{2.4}+\dfrac{6-4}{4.6}+...+\dfrac{2014-2012}{2012.2014}\right)\)
\(-B=\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{2013}-\dfrac{1}{2015}\right)+\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}+...+\dfrac{1}{2012}-\dfrac{1}{2014}\right)\)
\(-B=\left(1-\dfrac{1}{2015}\right)+\left(\dfrac{1}{2}-\dfrac{1}{2014}\right)\)
\(-B=\dfrac{2014}{2015}+\dfrac{2012}{2014.2}=\dfrac{2014^2+1006.2015}{2015.2014}\)
\(B=\dfrac{2014^2+1006.2015}{-2015.2014}\)
2) Để A là nguyên thì n - 1 là ước nguyên của 2
\(n-1=1\Rightarrow n=2\)
\(n-1=2\Rightarrow n=3\)
3) Ta gọi M là \(\dfrac{12}{5^{2012}}\)
\(M=\dfrac{5.12}{5^{2012}.5}=\dfrac{60}{5^{2013}}\)
\(\Rightarrow\) \(A=\dfrac{60}{5^{2013}}+\dfrac{18}{5^{2013}}=\dfrac{78}{5^{2013}}\)
Ta gọi Q là \(\dfrac{18}{5^{2012}}\)
\(Q=\dfrac{18}{5^{2012}}=\dfrac{18.5}{5^{2012}.5}=\dfrac{90}{5^{2013}}\)
\(\Rightarrow\) \(B=\dfrac{90}{5^{2013}}+\dfrac{12}{5^{2013}}=\dfrac{102}{5^{2013}}\)
\(\dfrac{90}{5^{2013}}< \dfrac{102}{5^{2013}}\Rightarrow A< B\)
Ai thấy đúng thì ủng hộ mink, thấy sai góp ý nha !!!
b: \(B=2013+\dfrac{2013}{3}+\dfrac{2013}{6}+\dfrac{2013}{10}+\dfrac{2013}{15}\)
\(=2013\left(1+\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+\dfrac{1}{15}\right)\)
\(=4026\cdot\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}\right)\)
\(=4026\cdot\dfrac{5}{6}=3355\)