Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1
a) \(P=\frac{3a+\sqrt{9a}-3}{a+\sqrt{a}-2}-\frac{\sqrt{a}+1}{\sqrt{a}+2}+\frac{\sqrt{a}-2}{1-\sqrt{a}}\) (ĐK : x\(\ge0\) ; x\(\ne\) 1)
\(=\frac{3a+\sqrt{9a}-3}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}-\frac{\sqrt{a}+1}{\sqrt{a}+2}-\frac{\sqrt{a}-2}{\sqrt{a}-1}\)
\(=\frac{3a+\sqrt{9a}-3-\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)-\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}\)
\(=\frac{3a+\sqrt{9a}-3-a+1-a+4}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}\)
\(=\frac{a+3\sqrt{a}+2}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}\)
\(=\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}+2\right)}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}\)
\(=\frac{\sqrt{a}+1}{\sqrt{a}-1}\)
b) \(P=\frac{\sqrt{a}+1}{\sqrt{a}-1}=\frac{\sqrt{a}-1+2}{\sqrt{a}-1}=1+\frac{2}{\sqrt{a}-1}\)
Vậy để P là số nguyên thì: \(\sqrt{a}-1\inƯ\left(2\right)\)
Mà Ư(2)={-1;1;2;-1}
=> \(\sqrt{a}-1\in\left\{1;-1;2;-2\right\}\)
Ta có bảng sau:
\(\sqrt{a}-1\) | 1 | -1 | 2 | -2 |
a | 4 | 0 | 9 | \(\sqrt{a}=-1\) (ktm) |
vậy a={0;4;9} thì P nguyên
Bài 2
\(P=\frac{\sqrt{a+4\sqrt{a-4}}+\sqrt{a-4\sqrt{a-4}}}{\sqrt{1-\frac{8}{a}+\frac{16}{a^2}}}\)(ĐK:a\(\ge\)8)
\(=\frac{\sqrt{\left(a-4\right)+4\sqrt{a-4}+4}+\sqrt{\left(a-4\right)-4\sqrt{a-4}+4}}{\sqrt{\left(1-\frac{4}{a}\right)^2}}\)
\(=\frac{\sqrt{\left(\sqrt{a-4}+2\right)^2}+\sqrt{\left(\sqrt{a-4}-2\right)^2}}{1-\frac{4}{a}}\)
\(=\sqrt{a-4}+2+\sqrt{a-4}-2:\frac{a-4}{a}\)
\(=2\sqrt{a-4}\cdot\frac{a}{a-4}\)
\(=\frac{2a}{\sqrt{a-4}}\)
Ta có \(\left(\sqrt{a}+2\right)\left(1-\sqrt{a}\right)=a+\sqrt{a}-2\)
\(=\frac{3\text{a}+3\sqrt{a}-3}{a+\sqrt{a}-2}-\frac{\sqrt{a}+1}{\sqrt{a}+2}-\frac{\sqrt{a}-2}{\sqrt{a}-1}\)
\(=\frac{3\text{a}+3\sqrt{a}-3-a+1+a-4}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}\)
\(=\frac{3\text{a}+3\sqrt{a}-6}{a+\sqrt{a}-2}\)
\(=\frac{3\left(a+\sqrt{a}-2\right)}{a+\sqrt{a}-2}\)
\(=3\)
b/ Ta có 3 là số nguyên nên biểu thức P luôn nguyên với mọi x
TICK CHO MÌNH NHA
a) ĐKXĐ:\(x\ge\frac{1}{3};x\ne1\)
b)\(P=\frac{3a+\sqrt{9a-3}-a+4+\sqrt{a}-1-a-\sqrt{a}+2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+2\right)}=\frac{a+6+\sqrt{9a-3}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+2\right)}\)
Ta có: P = \frac{4\sqrt{x}}{8x} \cdot \frac{\sqrt{x} + 2}{\sqrt{x} - 2} : \frac{\sqrt{x} + 2}{x - 4} \cdot \frac{\sqrt{x} - 2}{\sqrt{x} + 2} = \frac{4\sqrt{x}(\sqrt{x} + 2)}{(8x)(\sqrt{x} - 2)} : \frac{x - 4}{x - 4} = \frac{4(\sqrt{x} + 2)}{8(\sqrt{x} - 2)} = \frac{1}{\sqrt{x} - 2} 2) Tìm các giá trị của x để P = -4: Ta có: P = -4 \Rightarrow \frac{1}{\sqrt{x} - 2} = -4 \Rightarrow \sqrt{x} - 2 = -\frac{1}{4} \Rightarrow \sqrt{x} = \frac{7}{4} \Rightarrow x = \left(\frac{7}{4}\right)^2 = \frac{49}{16} Vậy x = 49/16 là giá trị cần tìm.
a) \(ĐKXĐ:\hept{\begin{cases}x>0\\x\ne4\end{cases}}\)
\(A=\left(\frac{1}{\sqrt{x}+2}+\frac{1}{\sqrt{x}-2}\right):\frac{\sqrt{x}}{\sqrt{x}-2}\)
\(\Leftrightarrow A=\frac{\sqrt{x}-2+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\frac{\sqrt{x}-2}{\sqrt{x}}\)
\(\Leftrightarrow A=\frac{2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}\)
\(\Leftrightarrow A=\frac{2}{\sqrt{x}+2}\)
b) Để \(A>\frac{1}{2}\)
\(\Leftrightarrow\frac{2}{\sqrt{x}+2}>\frac{1}{2}\)
\(\Leftrightarrow\sqrt{x}+2< 4\)
\(\Leftrightarrow\sqrt{x}< 2\)
\(\Leftrightarrow x< 4\)
Vậy để \(A>\frac{1}{2}\Leftrightarrow0< x< 4\)
c) \(B=\frac{7}{3}A\)
\(\Leftrightarrow B=\frac{7}{3}\cdot\frac{2}{\sqrt{x}+2}\)
\(\Leftrightarrow B=\frac{14}{3\sqrt{x}+6}\)
Tìm x hay tìm B đây bạn ?
Đk : \(a\ge0,a\ne1\)
a,Rút gọn được P= \(\frac{\sqrt{a}+1}{\sqrt{a}-1}\)
b, Có P<1 <=> \(\frac{\sqrt{a}+1}{\sqrt{a}-1}< 1\) <=> \(\frac{\sqrt{a}+1}{\sqrt{a}-1}-1< 0\)
<=> \(\frac{\sqrt{a}+1-\sqrt{a}+1}{\sqrt{a}-1}< 0\) <=> \(\frac{2}{\sqrt{a}-1}< 0\) => \(\sqrt{a}-1< 0\)
<=> \(\sqrt{a}< 1\) <=> a<1 ,k/hợp với đk của a
=> \(0\le a< 1\)
Vậy để P<1 <=> 0\(\le\)a<1
c,Có P= \(\frac{\sqrt{a}+1}{\sqrt{a}-1}=1+\frac{2}{\sqrt{a}-1}\)
Để \(P\in Z\) <=> \(\frac{2}{\sqrt{a}-1}\in Z\)
Với mọi a t/m đk có:\(\left[{}\begin{matrix}\sqrt{a}\in N\\\sqrt{a}\notin N\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}\sqrt{a}-1\in Z\\\sqrt{a}-1\notin Z\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}\frac{2}{\sqrt{a}-1}\in Z\left(tm\right)\\\frac{2}{\sqrt{a}-1}\notin Z\left(ktm\right)\end{matrix}\right.\)
=> \(\sqrt{a}-1\in\) Ư(2)\(=\left\{1,-1,2,-2\right\}\)
<=> \(\sqrt{a}\in\left\{2,0,3,-1\right\}\)
mà \(\sqrt{a}\ge0\) => \(\sqrt{a}\in\left\{2,0,3\right\}\) <=> \(a\in\left\{4,0,9\right\}\)
Tại a=0 => P=-1
Tại a=4=>P=3
Tại a=9 => P=2
Vậy a=4 thì P đạt GT nguyên lớn nhất