Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
điều kiện a> 0
\(D=\frac{\sqrt{a}\left(a\sqrt{a}+1\right)}{a-\sqrt{a}+1}-\frac{\sqrt{a}\left(2\sqrt{a}+1\right)}{\sqrt{a}}+1..\)
\(=\frac{\sqrt{a}\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{\left(a-\sqrt{a}+1\right)}-\left(2\sqrt{a}+1\right)+1\)
\(\sqrt{a}\left(\sqrt{a}+1\right)-2\sqrt{a}-1+1=a-\sqrt{a}.\)
b, D = 2 => \(a-\sqrt{a}=2\Leftrightarrow a-\sqrt{a}-2=0\)
\(\Leftrightarrow\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)=0\Leftrightarrow\sqrt{a}-1=0\)( vì a > 0 nên \(\sqrt{a}+1>0\))
\(\Leftrightarrow a=1\)
c, a > 1 => \(\sqrt{a}>1\Rightarrow\sqrt{a}-1>0\)
\(\Rightarrow D=a-\sqrt{a}=\sqrt{a}\left(\sqrt{a}-1\right)>0\)
Vậy D = | D | > 0
d, \(D=a-\sqrt{a}=a-\sqrt{a}+\frac{1}{4}-\frac{1}{4}=\left(\sqrt{a}-\frac{1}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)với mọi a > 0
vậy Dmin = - 1/4 khi a = 1/4
xin lỗi phàn b anh làm sai. Sửa lại như sau :
b, D = 2 => \(a-\sqrt{a}=2\Rightarrow a-\sqrt{a}-2=0\Leftrightarrow\left(\sqrt{a}-2\right)\left(\sqrt{a}+1\right)=0.\)
\(\Leftrightarrow\sqrt{a}-2=0\)( vì a > 0, nên căn a + 1 > 0 )
\(\Leftrightarrow a=4\)
\(A=\frac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\frac{2a+\sqrt{a}}{\sqrt{a}}+1\)
\(A=\frac{\sqrt{a}\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{a-\sqrt{a}+1}-\frac{\sqrt{a}\left(2\sqrt{a}+1\right)}{\sqrt{a}}+1\)
\(A=\sqrt{a}\left(\sqrt{a}+1\right)-\left(2\sqrt{a}+1\right)+1\)
\(A=a+\sqrt{a}-2\sqrt{a}-1+1\)
\(A=a-\sqrt{a}\)
a) ĐK: \(a>0\)
\(A=\frac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\frac{2a+\sqrt{a}}{\sqrt{a}}+1\)
\(=\frac{\sqrt{a}.\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{a-\sqrt{a}+1}-\frac{\sqrt{a}\left(2\sqrt{a}+1\right)}{\sqrt{a}}+1\)
\(=\sqrt{a}.\left(\sqrt{a}+1\right)-\left(2\sqrt{a}+1\right)+1\)
\(=a+\sqrt{a}-2\sqrt{a}=a-\sqrt{a}\)
a) điều kiện xác định : \(a>0\)
ta có : \(D=\dfrac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\dfrac{2a+\sqrt{a}}{\sqrt{a}}+1\)
\(\Leftrightarrow D=\dfrac{\left(a+\sqrt{a}\right)\left(a-\sqrt{a}+1\right)}{a-\sqrt{a}+1}-\dfrac{\sqrt{a}\left(2\sqrt{a}+1\right)}{\sqrt{a}}+1\)\(\Leftrightarrow D=a+\sqrt{a}-2\sqrt{a}-1+1=a-\sqrt{a}\)
b) ta có : \(D=2\Leftrightarrow x-\sqrt{x}=2\Leftrightarrow x-\sqrt{x}-2=0\)
\(\Leftrightarrow\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}+1=0\\\sqrt{x}-2=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x\in\varnothing\\x=4\end{matrix}\right.\)
vậy \(x=4\)
c) ta có : \(a>1\Leftrightarrow a-1>0\Leftrightarrow\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)>0\)
\(\Leftrightarrow\sqrt{a}-1>0\Leftrightarrow\sqrt{a}\left(\sqrt{a}-1\right)>0\Leftrightarrow a-\sqrt{a}>0\)
\(\Rightarrow\left|D\right|=\left|a-\sqrt{a}\right|=a-\sqrt{a}=D\) vậy \(D=\left|D\right|\)
d) ta có : \(D=a-\sqrt{a}\Leftrightarrow a-\sqrt{a}-D=0\)
phương trình này luôn có nghiệm \(\Rightarrow\Delta\ge0\)
\(\Leftrightarrow1^2-4\left(-D\right)=4D+1\ge0\Leftrightarrow D\ge\dfrac{-1}{4}\)
\(\Rightarrow D_{min}=\dfrac{-1}{4}\) khi \(\sqrt{a}=\dfrac{-b}{2a}=\dfrac{1}{2}\Leftrightarrow a=\dfrac{1}{4}\)
vậy \(D_{min}=\dfrac{-1}{4}\) khi \(a=\dfrac{1}{4}\)
ĐKXĐ: \(a>0\)
\(D=\frac{\sqrt{a}\left(a\sqrt{a}+1\right)}{a-\sqrt{a}+1}-\frac{\sqrt{a}\left(2\sqrt{a}+1\right)}{\sqrt{a}}+1\)
\(=\frac{\sqrt{a}\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{a-\sqrt{a}+1}-\left(2\sqrt{a}+1\right)+1\)
\(=a+\sqrt{a}-2\sqrt{a}=a-\sqrt{a}\)
\(D=2\Rightarrow a-\sqrt{a}=2\)
\(\Rightarrow a-\sqrt{a}-2=0\Rightarrow\left[{}\begin{matrix}\sqrt{a}=-1\left(l\right)\\\sqrt{a}=2\end{matrix}\right.\) \(\Rightarrow a=4\)
\(D=a-\sqrt{a}=\sqrt{a}\left(\sqrt{a}-1\right)\)
Với \(a>1\Rightarrow\sqrt{a}-1>0\Rightarrow D>0\Rightarrow D=\left|D\right|\)
\(D=a-\sqrt{a}=a-\sqrt{a}+\frac{1}{4}-\frac{1}{4}=\left(\sqrt{a}-\frac{1}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)
\(\Rightarrow D_{min}=-\frac{1}{4}\) khi \(\sqrt{a}=\frac{1}{2}\Rightarrow a=\frac{1}{4}\)