Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đkxd: \(x\ne\left\{\pm3\right\}\)
a) B= \(\frac{21+\left(x-4\right)\left(x+3\right)-\left(x+1\right)\left(x-3\right)}{x^2-9}:\left(\frac{x+3-1}{x+3}\right)\)
=\(\frac{21+x^2-x-12-x^2+2x+3}{x^2-9}.\frac{x+3}{x+2}\)
=\(\frac{x+12}{x-3}\)
b)|2x+1|=5
<=> \(\left[\begin{array}{nghiempt}2x+1=-5\\2x+1=5\end{array}\right.\)<=> x=-3 hoặc x=2
với x=-3 thì B=\(\frac{-3}{2}\)
với x=2 thì B=-14
\(ĐKXĐ:\hept{\begin{cases}x\ne\pm3\\1-\frac{1}{x+3}\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne\pm3\\x\ne-2\end{cases}}}\)
a ) \(B=\left(\frac{21}{x^2-9}-\frac{x-4}{3-x}-\frac{x-1}{3+x}\right):\left(1-\frac{1}{x+3}\right)\)
\(=\left(\frac{21}{\left(x-3\right)\left(x+3\right)}+\frac{x-4}{x-3}-\frac{x-1}{x+3}\right):\left(1-\frac{1}{x+3}\right)\)
\(=\frac{21+\left(x-4\right)\left(x+3\right)-\left(x-1\right)\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}:\frac{x+3-1}{x+3}\)
\(=\frac{21+x^2-x-12-\left(x^2-4x+3\right)}{\left(x-3\right)\left(x+3\right)}:\frac{x+2}{x+3}\)
\(=\frac{3x+6}{\left(x-3\right)\left(x+3\right)}.\frac{x+3}{x+2}\)
\(=\frac{3.\left(x+2\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)\left(x+2\right)}\)
\(=\frac{3}{x-3}\)
b ) \(B=-\frac{3}{5}\Leftrightarrow\frac{3}{x-3}=-\frac{3}{5}\)
\(\Leftrightarrow x-3=-5\Leftrightarrow x=-2\) ( do \(x\ne\pm3;x\ne-2\) )
c ) \(B< 0\Leftrightarrow\frac{3}{x-3}< 0\Leftrightarrow x-3< 0\Leftrightarrow\) \(\hept{\begin{cases}x< 3\\x\ne-2\\x\ne-3\end{cases}}\)
1, \(=\left[\frac{\left(1-x\right)\left(1+x+x^2\right)}{1-x}-x\right]:\frac{1-x^2}{\left(1-x\right)-x^2\left(1-x\right)}\)
\(=\left(1+x+x^2-x\right):\frac{1-x^2}{\left(1-x\right)\left(1-x^2\right)}\)\(=\left(x^2+1\right)\left(1-x\right)\)
2, để B<0 <=> (x2+1)(1-x)<0
vì x^2+1 > 0 với mọi x
=> \(\hept{\begin{cases}x^2+1>0\\1-x< 0\end{cases}\Leftrightarrow x>1}\)
3, \(\left|x-4\right|=5\Leftrightarrow\orbr{\begin{cases}x=9\\x=-1\left(loại\right)\end{cases}}\)
Thay x=9 vào B ta có: B=(92+1)(1-9)=82.(-8)=-656
a) ĐKXĐ : \(x\ne0\);\(x\ne2;-2\)
A=\(\left(\frac{1}{x-2}-\frac{2x}{4-x^2}+\frac{1}{2+x}\right).\left(\frac{2}{x}-1\right)\)
=\(\left(\frac{1}{x-2}+\frac{2x}{x^2-4}+\frac{1}{x+2}\right).\left(\frac{2}{x}-\frac{x}{x}\right)\)
=\(\frac{x+2+2x+x-2}{\left(x+2\right)\left(x-2\right)}.\frac{2-x}{x}\)
=\(\frac{4x}{\left(x+2\right)\left(x-2\right)}.\frac{-\left(x-2\right)}{x}\)
= \(\frac{-4}{x+2}\)
b) Ta có : \(2x^2+x=0\)
\(\Leftrightarrow x\left(2x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\left(ktm\right)\\x=\frac{-1}{2}\end{cases}}\left(tm\right)\)
Để A = -1/2 thì
\(\Leftrightarrow\frac{-4}{x+2}=\frac{-1}{2}\)
\(\Leftrightarrow-\left(x+2\right)=-8\)
\(\Leftrightarrow x+2=8\)
\(\Leftrightarrow x=6\)
c) Để A =0,5 thì
\(\frac{-4}{x+2}=0,5\)
\(\Leftrightarrow-8=x+2\)
\(\Leftrightarrow x=-10\)
d) Để A \(\inℤ\)thì
\(-4⋮x+2\)
\(\Leftrightarrow x+2\inƯ\left(-4\right)\)
\(\Leftrightarrow x+2\in\left\{1;2;4;-1;-2;-4\right\}\)
Lập bảng giá trị
x+2 | -1 | 1 | -2 | 2 | -4 | 4 |
x | -3 | -1 | -4 | 0 | -6 | 2 |
Mà \(x\ne0\)và \(x\ne2;-2\)
\(\Rightarrow x\in\left\{-1;-3;-4;-6\right\}\)
a) ĐKXĐ: x∉{3;-3}
Ta có: \(B=\left(\frac{21}{x^2-9}-\frac{x-4}{3-x}-\frac{x-1}{3+x}\right):\left(1-\frac{1}{x+3}\right)\)
\(=\left(\frac{21}{\left(x-3\right)\left(x+3\right)}+\frac{\left(x-4\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{\left(x-1\right)\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}\right):\left(\frac{x+3}{x+3}-\frac{1}{x+3}\right)\)
\(=\frac{21+x^2-x-12-\left(x^2-4x+3\right)}{\left(x-3\right)\left(x+3\right)}:\frac{x+2}{x+3}\)
\(=\frac{3x+6}{\left(x-3\right)\left(x+3\right)}\cdot\frac{x+3}{x+2}\)
\(=\frac{3\left(x+2\right)}{x-3}\cdot\frac{1}{x+2}=\frac{3}{x-3}\)
b) Ta có: |2x+1|=5
⇔\(\left[{}\begin{matrix}2x+1=5\\2x+1=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=4\\2x=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)
Do x=-3 không thỏa mãn ĐKXĐ nên ta chỉ tính giá trị của B tại x=2
Thay x=2 vào biểu thức \(B=\frac{3}{x-3}\), ta được:
\(\frac{3}{2-3}=\frac{3}{-1}=-3\)
Vậy: -3 là giá trị của biểu thức \(B=\frac{3}{x-3}\) tại x=2
c) Ta có: \(B=\frac{-3}{5}\)
⇔\(\frac{3}{x-3}=\frac{-3}{5}\)
\(\Leftrightarrow x-3=\frac{5\cdot3}{-3}=\frac{15}{-3}=-5\)
hay x=-2(tm)
Vậy: Khi \(B=\frac{-3}{5}\) thì x=-2
d) Để B<0 thì \(\frac{3}{x-3}< 0\)
mà 3>0
nên x-3<0
hay x<3
Vậy: Khi x<3 và x≠-3 thì B<0