K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
7 tháng 8 2021

ta có \(\frac{1}{10}+\frac{1}{11}+..+\frac{1}{19}< \frac{1}{10}+\frac{1}{10}+..+\frac{1}{10}=1\)

\(\frac{1}{20}+\frac{1}{21}+..+\frac{1}{39}< \frac{1}{20}+\frac{1}{20}+..+\frac{1}{20}=1\)

\(\frac{1}{40}+\frac{1}{41}+..+\frac{1}{79}< \frac{1}{40}+\frac{1}{40}+..+\frac{1}{40}=1\)

Vậy \(P< \frac{1}{9}+1+1+1=\frac{28}{9}\)

29 tháng 4 2020

\(A=\frac{10}{27}+\frac{9}{16}\frac{11}{34}\)

Ta có: \(\frac{10}{27}< >\backslash\left(\frac{9}{16}< >\backslash\left(\frac{11}{34}< >Nên\backslash\left(A< >b\right)\right)\right)\backslash\left(B=\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+...+\frac{1}{22}\right)\)

\(B>\frac{1}{22}+\frac{1}{22}+\frac{1}{22}+...+\frac{1}{22}=11.\frac{1}{22}=\frac{1}{2}\)

Nên \(B>\frac{1}{2}\)

16 tháng 5 2017

A=\(\frac{10^8+2}{10^8-1}=1+\frac{3}{10^8-1}\)

\(B=\frac{10^8}{10^8-3}=1+\frac{3}{10^8-3}\)

\(10^8-1>10^8-3\)

\(\Rightarrow\frac{3}{10^8-1}< \frac{3}{10^8-3}\)

\(\Rightarrow1+\frac{3}{10^8-1}< 1+\frac{3}{10^8-3}\)

Vậy \(A< B\)

9 tháng 3 2017

Ta có: 9^11+1= (9^2.10).9+1

= (...1)^10.9+1

=(...1).9+1

=(....9)+1

= ........0 \(⋮\) 10

=> 9^11+1\(⋮\) 10

22 tháng 3 2017

Ta có: 911+1= (92.10).9+1

= (...1)10.9+1

=(...1).9+1

=(....9)+1

= ........0

=> 911+1 chia hết cho 10(ĐPCM)

20 tháng 2 2019

Xét vế trái : \(T=\frac{1}{5}+\frac{1}{13}+\frac{1}{25}+...+\frac{1}{221}\)

Ta có : \(T< \frac{1}{5}+\frac{1}{12}+\frac{1}{24}+...+\frac{1}{220}\)

               \(=\frac{1}{5}+\frac{1}{2}\left(\frac{1}{6}+\frac{1}{12}+...+\frac{1}{110}\right)=\frac{1}{5}+\frac{1}{2}\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10.11}\right)\)

                \(=\frac{1}{5}+\frac{1}{2}\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}\right)\)

               \(=\frac{1}{5}+\frac{1}{2}\left(\frac{1}{2}-\frac{1}{11}\right)< \frac{1}{5}+\frac{1}{4}\Rightarrow T< \frac{9}{20}\)

23 tháng 4 2023

cíu tui trời ơi

 

30 tháng 4 2017

\(1+\frac{1}{3}+1+\frac{1}{9}+1+\frac{1}{27}+...+1+\frac{1}{3^{98}}\)\(\frac{1}{3^{98}}\)

\(=1.98+\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{98}}\right)\)

Đặt A=\(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{98}}\)

\(\Rightarrow3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{97}}\)

\(\Rightarrow3A-A=2A=1-\frac{1}{3^{98}}\Rightarrow A=\frac{1-\frac{1}{2^{98}}}{2}< 1\)

\(\Rightarrow B=98+A< 98+1< 99< 100\)

\(\Rightarrow B< 100\)