K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 11 2021

\(M-\frac{2020}{2011}=\frac{a^2-2a+2011}{a^2}-\frac{2010}{2011}\)

\(=\frac{2011a^2-2.2011a+2011^2-2010a^2}{2011a^2}\)

\(=\frac{a^2-2.2011a+2011^2}{2011a^2}=\frac{\left(a-2011\right)^2}{2011a^2}\ge0\)

\(\Rightarrow M\ge\frac{2010}{2011}\)

Vậy giá trị nhỏ nhất của \(M=\frac{2010}{2011}\) khi \(a-2011=0\Rightarrow a=2011\)

6 tháng 2 2017

bài này ta có thể giải theo 2 cách 

ta có A = \(\frac{x^2-2x+2011}{x^2}\)

\(\frac{x^2}{x^2}\)\(\frac{2x}{x^2}\)\(\frac{2011}{x^2}\)

= 1 - \(\frac{2}{x}\)\(\frac{2011}{x^2}\)

đặt \(\frac{1}{x}\)= y ta có 

A= 1- 2y + 2011y^2 

cách 1 : 

A = 2011y^2 - 2y + 1 

= 2011 ( y^2 - \(\frac{2}{2011}y\)\(\frac{1}{2011}\)

= 2011( y^2 - 2.y.\(\frac{1}{2011}\)\(\frac{1}{2011^2}\)\(\frac{1}{2011^2}\) + \(\frac{1}{2011}\)

= 2011 \(\left(\left(y-\frac{1}{2011}\right)^2\right)+\frac{2010}{2011^2}\)

= 2011\(\left(y-\frac{1}{2011}\right)^2\)\(\frac{2010}{2011}\)

vì ( y - \(\frac{1}{2011}\)2>=0 

=> 2011\(\left(y-\frac{1}{2011}\right)^2\)\(\frac{2010}{2011}\)> = \(\frac{2010}{2011}\)

hay A >=\(\frac{2010}{2011}\)

cách 2  

A = 2011y^2 - 2y + 1 

= ( \(\sqrt{2011y^2}\)) - 2 . \(\sqrt{2011y}\)\(\frac{1}{\sqrt{2011}}\)\(\frac{1}{2011}\)\(\frac{2010}{2011}\)

\(\left(\sqrt{2011y}-\frac{1}{\sqrt{2011}}\right)^2\)\(\frac{2010}{2011}\)

vì \(\left(\sqrt{2011y}-\frac{1}{\sqrt{2011}}\right)^2\)> =0 

nên \(\left(\sqrt{2011y}-\frac{1}{\sqrt{2011}}\right)^2\)\(\frac{2010}{2011}\)>= \(\frac{2010}{2011}\)

hay A >= \(\frac{2010}{2011}\)

1 tháng 5 2016

ta thấy:m2\(\ge\)0

=>m2-m\(\ge\)0-m

=>m2-m+1\(\ge\)-m+1

=>A\(\ge\)-m+1

vậy Amin=3 khi m=0

1 tháng 5 2016

sửa lại chỗ cuối nhé 

Amin=1 khi m=0

28 tháng 4 2018

Ta có :\(A=m^2-m+1\)

\(\Rightarrow A=m^2-\frac{1}{2}m-\frac{1}{2}m+\frac{1}{4}+\frac{3}{4}\)

\(\Rightarrow A=m\left(m-\frac{1}{2}\right)-\frac{1}{2}\left(m-\frac{1}{2}\right)+\frac{3}{4}\)

\(\Rightarrow A=\left(m-\frac{1}{2}\right)\left(m-\frac{1}{2}\right)+\frac{3}{4}=\left(m-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4},với\forall m\in Q\)

Dấu"=" xảy ra khi \(MinA=\frac{3}{4}\Leftrightarrow m-\frac{1}{2}=0\Leftrightarrow m=\frac{1}{2}\)

Vậy...........

6 tháng 5 2022

\(A=m^2-2m-5\)

\(=m^2-2m+1-6\)

\(=\left(m-1\right)^2-6\ge-6\)

Dấu '' = '' xảy ra khi \(\left(m-1\right)^2=0\Leftrightarrow m=1\)

Vậy \(Min_A=-6\) khi \(m=1\)

6 tháng 5 2022

\(A=m^2-2m-5\)

\(=\left(m^2-2m+1\right)-6\)

\(=\left(m-1\right)^2-6\ge-6\left(Vì\left(m-1\right)^2\ge0\forall m\right)\)

Min \(A=-6\Leftrightarrow m=1\)

6 tháng 5 2022

`A=m^2-2m-5`

`A=m^2-2m+1-6`

`A=(m-1)^2-6`

 Vì `(m-1)^2 >= 0 AA m`

`=>(m-1)^2-6 >= -6 AA m`

 Hay `A >= -6 AA m`

Dấu "`=`" xảy ra `<=>(m-1)^2=0<=>m-1=0<=>m=1`

Vậy `GTN N` của `A` là `-6` khi `m=1`