Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(M=x^2y+\frac{1}{3}xy^2+\frac{3}{5}xy^2-2xy+3x^2y-\frac{2}{3}\)
\(M=\left(x^2y+3x^2y\right)+\left(\frac{1}{3}xy^2+\frac{3}{5}xy^2\right)-2xy-\frac{2}{3}\)
\(M=4x^2y+\frac{8}{15}xy^2-2xy-\frac{2}{3}\)
b, Giá trị của biểu thức \(M=4x^2y+\frac{8}{15}xy^2-2xy-\frac{2}{3}\) tại \(x=-1\) và \(y=\frac{1}{2}\)
\(M=4.\left(-1\right)^2.\frac{1}{2}+\frac{8}{15}.\left(-1\right).\left(\frac{1}{2}\right)^2-2.\left(-1\right).\frac{1}{2}-\frac{2}{3}\)
\(M=4.1.\frac{1}{2}+\frac{8}{15}.\left(-1\right).\left(\frac{1}{4}\right)+1-\frac{2}{3}\)
\(M=2-\frac{2}{15}+1-\frac{2}{3}\)
\(M=\left(2+1\right)+\left(-\frac{2}{15}-\frac{2}{3}\right)\)
\(M=3+\left(\frac{-4}{5}\right)\)
\(M=\frac{11}{5}\)
Vậy giá trị của biểu thức \(M=4x^2y+\frac{8}{15}xy^2-2xy-\frac{2}{3}\) tại \(x=-1\) và \(y=\frac{1}{2}\) bằng \(\frac{11}{5}\)
a, Ta có : \(M=3x^5y^3-4x^4y^3+2x^4y^3+7xy^2-3x^5y^3\)
\(=-2x^4y^3+7xy^2\)
Bậc : 7
b, Thay x = 1 ; y = 1
\(M=-2.1^4.\left(-1\right)^3+7.1.\left(-1\right)^2\)
\(=2+7=9\)
1) \(P=\frac{16x^4y^6}{9}.\frac{9x^2y^4}{4}=4x^6y^{10}\), đa thức bậc 16, hệ số là 4, biến là \(x^6y^{10}\)
Tại x=-1, y=1 thay vào ta được: P=4
2) \(f\left(x\right)=x^5+x^3-4x^2-2x+5\)
\(g\left(x\right)=x^5-x^4+2x^2-3x+1\)
\(h\left(x\right)=f\left(x\right)+g\left(x\right)=2x^5-x^4+x^3-2x^2-5x+6\)
3) \(B=\frac{x^2+y^2+2+5}{x^2+y^2+2}=1+\frac{5}{x^2+y^2+2}\le1+\frac{5}{0+0+2}=\frac{7}{2}\)
Do B LN <=> \(\frac{5}{x^2+y^2+2}\)LN <=> \(x^2+y^2+2\)NN <=> x=y=0
4) Ta thấy 51x+26y=2000
CHÚ Ý: VP chẵn => VT chẵn mà 26y chẵn nên => 51x chẵn => x=2
Thay vào ta tìm được y=73 ( thỏa mãn là số nguyên tố)
vậy x=2, y=73
5) Nhận xét: VP \(\ge\)0 => VT \(\ge\)0 => \(y^2\le25\Rightarrow y=0,1,2,3,4,5\)
Mà VP chẵn => y lẻ => y=1,3,5
Thay y=1,3,5 vào ta được y=5, x=2009 là thỏa mãn