Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(M=\frac{x+2}{x+3}-\frac{5}{x^2+x-6}+\frac{1}{2-x}\)
\(=\frac{x+2}{x+3}-\frac{5}{\left(x-2\right)\left(x+3\right)}-\frac{1}{x-2}\)
\(=\frac{\left(x+2\right)\left(x-2\right)}{\left(x+3\right)\left(x-2\right)}-\frac{5}{\left(x-2\right)\left(x+3\right)}-\frac{x+3}{\left(x-2\right)\left(x+3\right)}\)
\(=\frac{x^2-4-5-x-3}{\left(x-2\right)\left(x+3\right)}=\frac{x^2-12-x}{\left(x-2\right)\left(x+3\right)}\)
\(=\frac{\left(x-4\right)\left(x+3\right)}{\left(x-2\right)\left(x+3\right)}=\frac{x-4}{x-2}\)
c, Đặt \(\frac{x-4}{x-2}=0\Leftrightarrow x-4=0\Leftrightarrow x=4\)( thỏa mãn )
Thử : \(\frac{x-4}{x-2}=\frac{4-4}{4-2}=0\)
a) \(=\frac{x-x+2}{x^2-4}:\frac{1-x+2}{x-2}\)ĐKXĐ:x\(\ne+-2\)
\(=\frac{2}{x^2-4}.\frac{x-2}{3-x}=\frac{2}{\left(x+2\right)\left(3-x\right)}\)
=\(\frac{2}{-x^2-x+6}\)
\(M=\frac{x^4+2}{x^6+1}+\frac{x^2-1}{x^4-x^2+1}-\frac{x^2+3}{x^4+4x^2+3}\left(ĐKXĐ:x\in R\right)\).
\(M=\frac{x^4+2}{x^6+1}+\frac{x^2-1}{x^4-x^2+1}-\frac{x^2+3}{\left(x^2+3\right)\left(x^2+1\right)}\).
\(M=\frac{x^4+2}{\left(x^2+1\right)\left(x^4-x^2+1\right)}+\frac{x^2-1}{x^4-x^2+1}-\frac{1}{x^2+1}\).
\(M=\frac{x^4+2}{\left(x^2+1\right)\left(x^4-x^2+1\right)}+\frac{\left(x^2-1\right)\left(x^2+1\right)}{\left(x^4-x^2+1\right)\left(x^2+1\right)}-\frac{x^4-x^2+1}{\left(x^4-x^2+1\right)\left(x^2+1\right)}\).
\(M=\frac{x^4+2+\left(x^2-1\right)\left(x^2+1\right)-x^4+x^2-1}{\left(x^4-x^2+1\right)\left(x^2+1\right)}\).
\(M=\frac{x^4+2+x^4-1-x^4+x^2-1}{\left(x^2+1\right)\left(x^4-x^2+1\right)}=\frac{x^4+x^2}{\left(x^4-x^2+1\right)\left(x^2+1\right)}\)
\(M=\frac{x^2\left(x^2+1\right)}{\left(x^2+1\right)\left(x^4-x^2+1\right)}=\frac{x^2}{x^4-x^2+1}\).
Vậy với \(x\in R\)thì \(M=\frac{x^2}{x^4-x^2+1}\).
a,\(M=\left(\frac{4}{x-4}-\frac{4}{x+4}\right).\frac{x^2+8x+16}{32}\)
\(M=\left(\frac{4\left(x+4\right)-4\left(x-4\right)}{\left(x+4\right)\left(x-4\right)}\right).\frac{\left(x+4\right)^2}{32}\)
\(M=\frac{4x+16-4x+16}{\left(x+4\right)\left(x-4\right)}.\frac{\left(x+4\right)^2}{32}\)
\(M=\frac{32\left(x+4\right)^2}{32\left(x+4\right)\left(x-4\right)}=\frac{x+4}{x-4}\)
b,
Để M = \(\frac{1}{3}\)
\(\Rightarrow x-4=3x+12\)
\(\Rightarrow2x=16\Leftrightarrow x=8\)
\(c,\)\(\frac{x+4}{x-4}=\frac{x-4+8}{x-4}\)
\(\Rightarrow x-4\inƯ\left(8\right)=\left(1;-1;2;-2;4;-4;8;-8\right)\)
\(\Rightarrow x-4\in\left(5;3;6;2;8;0;12;-4\right)\)
Vậy để M thuộc Z thì x phải thỏa mãn các điều kiện trên .
a)\(\text{ĐKXĐ:}\hept{\begin{cases}x^3-4x\ne0\\6-3x\ne0\\x+2\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne0\\x\ne\mp2\end{cases}}\)
\(M=\left(\frac{x^2}{x^3-4x}+\frac{6}{6-3x}+\frac{1}{x+2}\right):\left(x-2+\frac{10-x^2}{x+2}\right)\)
\(=\left[\frac{x^2}{x\left(x-2\right)\left(x+2\right)}-\frac{6}{3\left(x-2\right)}+\frac{1}{x+2}\right]:\left[\frac{x^2-4+10-x^2}{x+2}\right]\)
\(=\left[\frac{x^2}{x\left(x-2\right)\left(x+2\right)}-\frac{2x\left(x+2\right)}{x\left(x-2\right)\left(x+2\right)}+\frac{x\left(x-2\right)}{x\left(x-2\right)\left(x+2\right)}\right].\frac{x+2}{6}\)
\(=\frac{x^2-2x^2-4x+x^2-2x}{x\left(x-2\right)\left(x+2\right)}\cdot\frac{x+2}{6}\)
\(=\frac{1}{x+2}\)
b) /x/= \(\frac{1}{2}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=-\frac{1}{2}\end{cases}}\)
*\(\text{Với }x=\frac{1}{2}\text{ta có pt:}\)
\(M=\frac{1}{x+2}=\frac{1}{\frac{1}{2}+2}=\frac{2}{5}\)
*\(\text{Với x= -1/2 ta có pt:}\)
\(M=\frac{1}{x+2}=\frac{1}{-\frac{1}{2}+2}=\frac{2}{3}\)
a) = (\(\frac{x^2}{x\left(x^2\right)-4}+\frac{6}{3\left(2-x\right)}+\frac{1}{x+2}\)):(x-2+\(\frac{10-x^2}{x+2}\))
=(\(\frac{x^2}{x\left(x-2\right)\left(x+2\right)}+\frac{-6}{3\left(x-2\right)}+\frac{1}{x+2}\)) :(x-2+\(\frac{10-x^2}{x+2}\))
=(\(\frac{3x^2-6x\left(x+2\right)+\left(x-2\right)3x}{3x\left(x-2\right)\left(x+2\right)}\)) :(\(\frac{\left(x-2\right)\left(x+2\right)+10-x^2}{x+2}\))
=(\(\frac{3x^2-6x^2-12x+3x^2-6x}{3x\left(x-2\right)\left(x+2\right)}\)):(\(\frac{x^2-4+10-x^2}{x+2}\))
=\(\frac{-18x}{3x\left(x-2\right)\left(x+2\right)}\):\(\frac{6}{x+2}\)
=\(\frac{-6}{\left(x-2\right)\left(x+2\right)}\):\(\frac{6}{x+2}\)
=\(\frac{-6}{\left(x-2\right)\left(x+2\right)}.\frac{x+2}{6}\)
=\(\frac{-1}{x-2}\)
Vậy M=\(\frac{-1}{x-2}\)
b)Vì /x/ =1/2 nên x=1/2 hoặc x=-1/2Thay x=1/2 vào M ta được;
\(\frac{-1}{\frac{1}{2}-2}\)=\(\frac{2}{3}\)
Thay x=-1/2 vào M ta được:
\(\frac{-1}{-\frac{1}{2}-2}\)=\(\frac{2}{5}\)
Vậy \(M\in\)\(\hept{\begin{cases}\\\end{cases}\frac{2}{5};\frac{2}{3}}\)khi /x/=1/2
\(M=\frac{x+2}{x+3}-\frac{5}{x^2+x-6}+\frac{1}{2-x}\)
a) ĐKXĐ : x ≠ -3 , x ≠ 2
\(=\frac{x+2}{x+3}-\frac{5}{x^2-2x+3x-6}-\frac{1}{x-2}\)
\(=\frac{x+2}{x+3}-\frac{5}{x\left(x-2\right)+3\left(x-2\right)}-\frac{1}{x-2}\)
\(=\frac{\left(x+2\right)\left(x-2\right)}{\left(x+3\right)\left(x-2\right)}-\frac{5}{\left(x+3\right)\left(x-2\right)}-\frac{x+3}{\left(x+3\right)\left(x-2\right)}\)
\(=\frac{x^2-4-5-x-3}{\left(x+3\right)\left(x-2\right)}=\frac{x^2-x-12}{\left(x+3\right)\left(x-2\right)}\)
\(=\frac{x^2-4x+3x-12}{\left(x+3\right)\left(x-2\right)}=\frac{x\left(x-4\right)+3\left(x-4\right)}{\left(x+3\right)\left(x-2\right)}\)
\(=\frac{\left(x+3\right)\left(x-4\right)}{\left(x+3\right)\left(x-2\right)}=\frac{x-4}{x-2}\)
b) Để M = 1/3
=> \(\frac{x-4}{x-2}=\frac{1}{3}\)( x ≠ -3 , x ≠ 2 )
=> 3( x - 4 ) = x - 2
=> 3x - 12 - x + 2 = 0
=> 2x - 10 = 0
=> 2x = 10
=> x = 5 ( tm )
Vậy x = 5 thì M = 1/3
đk: \(x\ne2,x\ne-3\)
a) Ta có: \(M=\frac{-4+x^2}{x^2+x-6}-\frac{5}{x^2+x-6}-\frac{x+3}{x^2+x-6}\)
\(=\frac{x^2-x-12}{x^2+x-6}=\frac{\left(x-4\right)\left(x+3\right)}{\left(x-2\right)\left(x+3\right)}=\frac{x-4}{x-2}\)
b) \(M=\frac{1}{3}\Rightarrow\frac{x-4}{x-2}=\frac{1}{3}\Leftrightarrow3x-12=x-2\Leftrightarrow x=5\)