Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
ĐK: \(x>0; x\neq 4\)
Có: \(K=\left(\frac{4\sqrt{x}(2-\sqrt{x})}{(2+\sqrt{x})(2-\sqrt{x})}+\frac{8x}{4-x}\right):\left(\frac{\sqrt{x}-1}{\sqrt{x}(\sqrt{x}-2)}-\frac{2(\sqrt{x}-2)}{\sqrt{x}(\sqrt{x}-2)}\right)\)
\(=\frac{8\sqrt{x}-4x+8x}{(2+\sqrt{x})(2-\sqrt{x})}: \frac{\sqrt{x}-1-2(\sqrt{x}-2)}{\sqrt{x}(\sqrt{x}-2)}\)
\(=\frac{8\sqrt{x}+4x}{(2+\sqrt{x})(2-\sqrt{x})}.\frac{\sqrt{x}(\sqrt{x}-2)}{-\sqrt{x}+3}\)
\(=\frac{4\sqrt{x}(2+\sqrt{x})}{2+\sqrt{x}}. \frac{-\sqrt{x}}{3-\sqrt{x}}=\frac{-4\sqrt{x}.\sqrt{x}}{3-\sqrt{x}}=\frac{4x}{\sqrt{x}-3}\)
b)
\(K=-1\Leftrightarrow \frac{4x}{\sqrt{x}-3}=-1\Rightarrow 4x=-(\sqrt{x}-3)\)
\(\Leftrightarrow 4x+\sqrt{x}-3=0\)
\(\Leftrightarrow (4\sqrt{x}-3)(\sqrt{x}+1)=0\)
Vì \(\sqrt{x}+1>0\Rightarrow 4\sqrt{x}-3=0\Rightarrow x=\frac{9}{16}\)
c) \(m(\sqrt{x}-3)K>x+1\)
\(\Leftrightarrow m. (\sqrt{x}-3).\frac{4x}{\sqrt{x}-3}>x+1\)
\(\Leftrightarrow m> \frac{x+1}{4x}\)
\(\Leftrightarrow m> max(\frac{4x}{x+1}), \forall x< 9\)
Với đk đã cho thì ta thấy \(\frac{4x}{x+1}\) có min thôi.
1 , ĐKXĐ : \(x\ge0,x\ne1\)
Với điều kiện xác định trên phương trình đã cho thánh :
\(\dfrac{1}{\sqrt{x}+1}-\dfrac{2}{\sqrt{x}-1}+\dfrac{x+3}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\sqrt{x}-1-2\left(\sqrt{x}+1\right)+x+3}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{x+\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\sqrt{x}}{\sqrt{x}-1}\)
a) A=\(\dfrac{\sqrt{x}[\left(\sqrt{x}\right)^3-1]}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\)
A=\(\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\dfrac{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}\) A=\(\sqrt{x}\left(\sqrt{x}-1\right)-2\sqrt{x}-1+2\sqrt{x}+2\)
A=\(x-\sqrt{x}+1\)
b) A=\(\dfrac{3}{4}\)
=> \(x-\sqrt{x}+1=\dfrac{3}{4}\)
\(x-\sqrt{x}+\dfrac{1}{4}=0\)
\(\left(\sqrt{x}-\dfrac{1}{2}\right)^2=0\)
=> \(\sqrt{x}=\dfrac{1}{2}\)
=> \(x=\dfrac{1}{4}\)
\(ĐKXĐ:x\ge0,x\ne1\)
\(K=\left[\dfrac{x+3\sqrt{x}+2}{x+\sqrt{x}-2}-\dfrac{x+\sqrt{x}}{x-1}\right]:\left[\dfrac{1}{\sqrt{x}+1}+\dfrac{1}{\sqrt{x}-1}\right]\)
\(K=\left[\dfrac{x+2\sqrt{x}+\sqrt{x}+2}{x+2\sqrt{x}-\sqrt{x}-2}-\dfrac{x+\sqrt{x}}{x-1}\right]:\left[\dfrac{\sqrt{x}-1+\sqrt{x}+1}{x-1}\right]\)
\(K=\left[\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)+\left(\sqrt{x}+2\right)}{\sqrt{x}\left(\sqrt{x}+2\right)-\left(\sqrt{x}+2\right)}-\dfrac{x+\sqrt{x}}{x-1}\right]:\dfrac{2\sqrt{x}}{x-1}\)
\(K=\left[\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}-\dfrac{x+\sqrt{x}}{x-1}\right]:\dfrac{2\sqrt{x}}{x-1}\)
\(K=\left[\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{x+\sqrt{x}}{x-1}\right]:\dfrac{2\sqrt{x}}{x-1}\)
\(K=\left[\dfrac{\left(\sqrt{x}+1\right)^2}{x-1}-\dfrac{x+\sqrt{x}}{x-1}\right]:\dfrac{2\sqrt{x}}{x-1}\)
\(K=\dfrac{x+2\sqrt{x}+1-x-\sqrt{x}}{x-1}.\dfrac{x-1}{2\sqrt{x}}\)
\(K=\dfrac{\sqrt{x}+1}{x-1}.\dfrac{x-1}{2\sqrt{x}}\)
\(K=\dfrac{\sqrt{x}+1}{2\sqrt{x}}\)
b.
Ta có: \(24+\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}=24+\sqrt{\sqrt{5}-\sqrt{3-\sqrt{20-2.2\sqrt{5}.3+9}}}\)
\(=24+\sqrt{\sqrt{5}-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}=24+\sqrt{\sqrt{5}-\sqrt{3-2\sqrt{5}+3}}=24+\sqrt{\sqrt{5}-\sqrt{5-2\sqrt{5}+1}}=24+\sqrt{\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}}\)
\(=24+\sqrt{\sqrt{5}-\sqrt{5}+1}=24+1=25\)
Thay \(x=25\) vào \(K\) ta được:
\(K=\dfrac{\sqrt{x}+1}{2\sqrt{x}}=\dfrac{\sqrt{25}+1}{2.\sqrt{25}}=\dfrac{6}{10}=\dfrac{3}{5}\)
c.
Ta có: \(\dfrac{1}{K}-\dfrac{\sqrt{x}+1}{8}\ge1\)
\(\Rightarrow\dfrac{1}{K}-\dfrac{\sqrt{x}+1}{8}-1\ge0\)
\(\Rightarrow\dfrac{2\sqrt{x}}{\sqrt{x}+1}-\dfrac{\sqrt{x}+1}{8}-1\ge0\)
\(\Rightarrow\dfrac{16\sqrt{x}}{8\sqrt{x}+8}-\dfrac{x+2\sqrt{x}+1}{8\sqrt{x}+8}-\dfrac{8\sqrt{x}+8}{8\sqrt{x}+8}\ge0\)
\(\Rightarrow\dfrac{16\sqrt{x}-x-2\sqrt{x}-1-8\sqrt{x}-8}{8\sqrt{x}+8}\ge0\)
\(\Rightarrow\dfrac{6\sqrt{x}-x-9}{8\sqrt{x}+8}\ge0\)
\(\Rightarrow\dfrac{-\left(\sqrt{x}-3\right)^2}{8\sqrt{x}+8}\ge0\)
Ta có: \(\left\{{}\begin{matrix}-\left(\sqrt{x}-3\right)^2\le0\\8\sqrt{x}+8\ge0\end{matrix}\right.\)
⇒ Không có \(x\) thỏa mãn
Bài 2:
a: \(A=\left(5+\sqrt{5}\right)\left(\sqrt{5}-2\right)+\dfrac{\sqrt{5}\left(\sqrt{5}+1\right)}{4}-\dfrac{3\sqrt{5}\left(3-\sqrt{5}\right)}{4}\)
\(=-5+3\sqrt{5}+\dfrac{5+\sqrt{5}-9\sqrt{5}+15}{4}\)
\(=-5+3\sqrt{5}+5-2\sqrt{5}=\sqrt{5}\)
b: \(B=\left(\dfrac{x+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+3\right)}\right):\dfrac{x+3\sqrt{x}-2\left(\sqrt{x}+3\right)+6}{\sqrt{x}\left(\sqrt{x}+3\right)}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{x+3\sqrt{x}+6-2\sqrt{x}-6}=1\)
Bài 1:
a)Với x > 0;x ≠ 4 ta có:
\(\left(\dfrac{1}{x-4}-\dfrac{1}{x+4\sqrt{x}+4}\right)\cdot\dfrac{x+2\sqrt{x}}{\sqrt{x}}\)
\(=\left(\dfrac{1}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\dfrac{1}{\left(\sqrt{x}+2\right)^2}\right)\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\sqrt{x}}\)
\(=\dfrac{1}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\cdot\left(\sqrt{x}+2\right)-\dfrac{1}{\left(\sqrt{x}+2\right)^2}\cdot\left(\sqrt{x}+2\right)\)
\(=\dfrac{1}{\sqrt{x}-2}-\dfrac{1}{\sqrt{x}+2}=\dfrac{\left(\sqrt{x}+2\right)-\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{4}{x-4}\)
c)\(\left(\dfrac{\sqrt{b}}{a-\sqrt{ab}}-\dfrac{\sqrt{a}}{\sqrt{ab}-b}\right)\left(a\sqrt{b}-b\sqrt{a}\right)\)
\(=\left(\dfrac{\sqrt{b}}{\sqrt{a}\left(\sqrt{a}-\sqrt{b}\right)}-\dfrac{\sqrt{a}}{\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)}\right)\cdot\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)\)
\(=\dfrac{b-a}{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}\cdot\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)=b-a\)
Bài 2:
a)Với a > 0;a ≠ 1;a ≠ 2 ta có
\(P=\left(\dfrac{\sqrt{a}^3-1}{\sqrt{a}\left(\sqrt{a}-1\right)}-\dfrac{\sqrt{a}^3+1}{\sqrt{a}\left(\sqrt{a}+1\right)}\right)\cdot\dfrac{a-2}{a+2}\)
\(=\left(\dfrac{a+\sqrt{a}+1}{\sqrt{a}}-\dfrac{a-\sqrt{a}+1}{\sqrt{a}}\right)\cdot\dfrac{a-2}{a+2}\)
\(=\dfrac{a+\sqrt{a}+1-a+\sqrt{a}-1}{\sqrt{a}}\cdot\dfrac{a-2}{a+2}\)
\(=\dfrac{2\sqrt{a}}{\sqrt{a}}\cdot\dfrac{a-2}{a+2}=\dfrac{2\left(a-2\right)}{a+2}\)
b)Ta có:
\(P=\dfrac{2\left(a-2\right)}{a+2}=\dfrac{2a-4}{a+2}=\dfrac{2\left(a+2\right)-8}{a+2}=2-\dfrac{8}{a+2}\)
P nguyên khi \(2-\dfrac{8}{a+2}\) nguyên⇒\(\dfrac{8}{a+2}\) nguyên⇒\(a+2\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)
\(TH1:a+2=1\Rightarrow a=-1\left(loai\right)\)
\(TH2:a+2=-1\Rightarrow a=-3\left(loai\right)\)
\(TH3:a+2=2\Rightarrow a=0\left(loai\right)\)
\(TH4:a+2=-2\Rightarrow a=-4\left(loai\right)\)
\(TH5:a+2=4\Rightarrow a=2\left(loai\right)\)
\(TH6:a+2=-4\Rightarrow a=-6\left(loai\right)\)
\(TH7:a+2=8\Rightarrow a=6\left(tm\right)\)
\(TH8:a+2=-8\Rightarrow a=-10\left(loai\right)\)
Vậy a = 6
Câu 1:
a: \(P=\dfrac{x+\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}+2\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
\(=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}}=\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
b: Để \(2P=2\sqrt{5}+5\) thì \(P=\dfrac{2\sqrt{5}+5}{2}\)
\(\Leftrightarrow\sqrt{x}\left(2\sqrt{5}+5\right)=2\left(\sqrt{x}+1\right)\)
\(\Leftrightarrow\sqrt{x}\left(2\sqrt{5}+3\right)=2\)
hay \(x=\dfrac{4}{29+12\sqrt{5}}=\dfrac{4\left(29-12\sqrt{5}\right)}{121}\)
Câu 1:
a: \(P=\dfrac{x+\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}+2\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
\(=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}}=\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
b: Để \(2P=2\sqrt{5}+5\) thì \(P=\dfrac{2\sqrt{5}+5}{2}\)
\(\Leftrightarrow\sqrt{x}\left(2\sqrt{5}+5\right)=2\left(\sqrt{x}+1\right)\)
\(\Leftrightarrow\sqrt{x}\left(2\sqrt{5}+3\right)=2\)
hay \(x=\dfrac{4}{29+12\sqrt{5}}=\dfrac{4\left(29-12\sqrt{5}\right)}{121}\)
a: \(A=\dfrac{-\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\sqrt{x}+3}-\dfrac{\left(\sqrt{x}-3\right)^2}{\sqrt{x}-3}-6\)
\(=-\sqrt{x}+3-\sqrt{x}+3-6=-2\sqrt{x}\)
b: \(\left(\dfrac{2\sqrt{x}}{x\sqrt{x}+x+\sqrt{x}+1}-\dfrac{1}{\sqrt{x}+1}\right):\left(\dfrac{2\sqrt{x}}{\sqrt{x}+1}-1\right)\)
\(=\left(\dfrac{2\sqrt{x}}{\left(\sqrt{x}+1\right)\left(x+1\right)}-\dfrac{1}{\sqrt{x}+1}\right):\dfrac{2\sqrt{x}-\sqrt{x}-1}{\sqrt{x}+1}\)
\(=\dfrac{2\sqrt{x}-x-1}{\left(\sqrt{x}+1\right)\left(x+1\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-1}=\dfrac{1}{x+1}\)
g: \(\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{1}{\sqrt{x}+1}\right)\left(\dfrac{x-1}{\sqrt{x}+1}-2\right)\)
\(=\dfrac{\sqrt{x}+1+\sqrt{x}-1}{x-1}\cdot\left(\sqrt{x}-1-2\right)\)
\(=\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)}{x-1}\)
\(a.K=\left(\dfrac{\sqrt{x}+2}{3\sqrt{x}}+\dfrac{2}{\sqrt{x}+1}-3\right):\dfrac{2-4\sqrt{x}}{\sqrt{x}+1}-\dfrac{3\sqrt{x}+1-x}{3\sqrt{x}}=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}+1\right)+6\sqrt{x}-9\sqrt{x}\left(\sqrt{x}+1\right)}{3\sqrt{x}\left(\sqrt{x}+1\right)}.\dfrac{\sqrt{x}+1}{2\left(1-2\sqrt{x}\right)}-\dfrac{3\sqrt{x}+1-x}{3\sqrt{x}}=\dfrac{2\left(1-2\sqrt{x}\right)\left(1+2\sqrt{x}\right)}{3\sqrt{x}}.\dfrac{1}{2\left(1-2\sqrt{x}\right)}-\dfrac{3\sqrt{x}+1-x}{3\sqrt{x}}=\dfrac{x-\sqrt{x}}{3\sqrt{x}}=\dfrac{\sqrt{x}-1}{3}\) \(b.x=\dfrac{1}{4}\left(KTMĐKXĐ\right)\) nên tại \(x=\dfrac{1}{4}\) giá trị của K không xác định .
\(c.K< 1\) ⇔ \(\dfrac{\sqrt{x}-1}{3}< 1\)
⇔ \(\sqrt{x}-1< 3\text{⇔}x< 16\)
Kết hợp với ĐKXĐ : \(0< x< 16\) ( x # \(\dfrac{1}{4}\) )
\(d.Để:\) K ∈ Z ⇔ \(\sqrt{x}-1\text{∈}\left\{1;-1;3;-3\right\}\)
+) \(\sqrt{x}-1=1\text{⇔ }x=4\left(TM\right)\)
+) \(\sqrt{x}-1=-1\text{⇔ }x=0\left(KTM\right)\)
+) \(\sqrt{x}-1=3\text{⇔ }x=16\left(TM\right)\)
+) \(\sqrt{x}-1=-3\text{⇔ }vô-nghiem\)
KL...............