\(^2\)-8mx+9-m\(^2\)(với m là tham số)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
24 tháng 1 2022

\(f\left(x\right)=x^2+2\left(m+1\right)x+m+3\)

Để \(f\left(x\right)\ge0\)với mọi \(x\inℝ\)thì: 

\(\hept{\begin{cases}a=1>0\\\Delta'=\left(m+1\right)^2-\left(m+3\right)\ge0\end{cases}}\Leftrightarrow m^2+m-2\ge0\)

\(\Leftrightarrow\left(m+2\right)\left(m-1\right)\ge0\)

\(\Leftrightarrow\orbr{\begin{cases}m\ge1\\m\le-2\end{cases}}\).

16 tháng 3 2016

ừm...để giải cái đã.Xem nào...
 

Với m=1m=−1 thì PT f(x)=0f(x)=0 có nghiệm x=1x=1 (chọn)

Với m1m≠−1 thì f(x)f(x) là đa thức bậc 2 ẩn xx

f(x)=0f(x)=0 có nghiệm khi mà Δ=m22m(m+1)0Δ′=m2−2m(m+1)≥0

m22m0m(m+2)0⇔−m2−2m≥0⇔m(m+2)≤0

2m0⇔−2≤m≤0

Tóm lại để f(x)=0f(x)=0 có nghiệm thì m[2;0]

7 tháng 4 2017

 

a)

Để \(5x^2-x+m>0\) thì:

\(\Delta< 0\Rightarrow1-20m< 0\Rightarrow m>\dfrac{1}{20}\)

b)

\(mx^2-10x-5< 0\)

Xét \(m=0\) ta có: \(-10x-5< 0\)\(\Leftrightarrow x>\dfrac{1}{2}\) (loại)
Xét \(m\ne0\). Theo định lý về dấu tam thức bậc hai:
\(mx^2-10x-5< 0\)\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\25+5m< 0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\m< -5\end{matrix}\right.\)\(\Leftrightarrow m< -5\).
Vậy với \(m< -5\) thì \(mx^2-10x-5< 0\).