Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ĐKXĐ: x>0; x<>1
b: \(E=\dfrac{x+2\sqrt{x}+1-x+2\sqrt{x}-1+4\sqrt{x}\left(x-1\right)}{x-1}:\dfrac{x-1}{\sqrt{x}}\)
\(=\dfrac{4\sqrt{x}+4x\sqrt{x}-4\sqrt{x}}{x-1}\cdot\dfrac{\sqrt{x}}{x-1}\)
\(=\dfrac{4x^2}{\left(x-1\right)^2}\)
c: Để E=2 thì \(4x^2=2x^2-4x+2\)
\(\Leftrightarrow2x^2+4x-2=0\)
hay \(x\in\left\{-1+\sqrt{2};-1-\sqrt{2}\right\}\)
a: Sửa đề: \(E=\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{\sqrt{x}-1}{\sqrt{x}+1}+4\sqrt{x}\right):\left(\sqrt{x}-\dfrac{1}{\sqrt{x}}\right)\)
\(=\left(\dfrac{x+2\sqrt{x}+1-x+2\sqrt{x}-1}{x-1}+4\sqrt{x}\right):\dfrac{x-1}{\sqrt{x}}\)
\(=\left(\dfrac{4\sqrt{x}+4\sqrt{x}\left(x-1\right)}{x-1}\right)\cdot\dfrac{\sqrt{x}}{x-1}\)
\(=\dfrac{4\sqrt{x}\left(1+x-1\right)}{x-1}\cdot\dfrac{\sqrt{x}}{x-1}=\dfrac{4x^2}{\left(x-1\right)^2}\)
b: Để E=2 thì \(4x^2=2\left(x-1\right)^2\)
\(\Leftrightarrow4x^2-2\left(x^2-2x+1\right)=0\)
\(\Leftrightarrow4x^2-2x^2+4x-2=0\)
\(\Leftrightarrow2x^2+4x-2=0\)
\(\Leftrightarrow x^2+2x-1=0\)
\(\Leftrightarrow\left(x+1\right)^2=2\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=\sqrt{2}\\x+1=-\sqrt{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{2}-1\left(nhận\right)\\x=-\sqrt{2}-1\left(loại\right)\end{matrix}\right.\)
c: \(x=\left(4+\sqrt{15}\right)\cdot\left(\sqrt{5}-\sqrt{3}\right)\cdot\sqrt{8-2\sqrt{15}}\)
\(=\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)\)
\(=32-8\sqrt{15}+8\sqrt{15}-30=2\)
Thay x=2 vào E, ta được:
\(E=\dfrac{4\cdot2^2}{\left(2-1\right)^2}=16\)
\(M=\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{\sqrt{x}-1}{\sqrt{x}+1}+4\sqrt{x}\right)\div\left(\sqrt{x}-\dfrac{1}{\sqrt{x}}\right)\)
\(=\dfrac{\left(\sqrt{x}+1\right)^2-\left(\sqrt{x}-1\right)^2+4\sqrt{x}\left(x-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\div\dfrac{x-1}{\sqrt{x}}\)
\(=\dfrac{4\sqrt{x}+4x\sqrt{x}-4\sqrt{x}}{\left(x-1\right)}\times\dfrac{\sqrt{x}}{x-1}\)
\(=\dfrac{4x^2}{\left(x-1\right)^2}\)
~ ~ ~
\(\dfrac{4x^2}{\left(x-1\right)^2}=2\)
\(\Leftrightarrow4x^2=2\left(x^2-2x+1\right)\)
\(\Leftrightarrow2x^2+4x-2=0\)
\(\Leftrightarrow2\left(x+1-\sqrt{2}\right)\left(x+1+\sqrt{2}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1+\sqrt{2}\\x=-1-\sqrt{2}\end{matrix}\right.\) (nhận)
~ ~ ~
\(x=\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)
\(=\left(\sqrt{10}-\sqrt{6}\right)\sqrt{\left(4-\sqrt{15}\right)\left(4+\sqrt{15}\right)\left(4+\sqrt{15}\right)}\)
\(=\sqrt{2}\left(\sqrt{5}-\sqrt{3}\right)\sqrt{\left(16-15\right)\left(4+\sqrt{15}\right)}\)
\(=\left(\sqrt{5}-\sqrt{3}\right)\sqrt{8+2\sqrt{15}}\)
\(=\left(\sqrt{5}-\sqrt{3}\right)\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}\)
= 5 - 3 = 2
\(M=\dfrac{4x^2}{\left(x-1\right)^2}=16\)
a: Ta có: \(E=\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{\sqrt{x}-1}{\sqrt{x}+1}+4\sqrt{x}\right):\left(\sqrt{x}-\dfrac{1}{\sqrt{x}}\right)\)
\(=\left(\dfrac{x+2\sqrt{x}+1-x+2\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+4\sqrt{x}\right):\left(\dfrac{x-1}{\sqrt{x}}\right)\)
\(=\left(\dfrac{4\sqrt{x}+4\sqrt{x}\left(x-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\cdot\dfrac{\sqrt{x}}{x-1}\)
\(=\dfrac{4x^2}{\left(x-1\right)^2}\)
b: Để E=2 thì \(4x^2=2\left(x-1\right)^2\)
\(\Leftrightarrow4x^2-2x^2+4x-2=0\)
\(\Leftrightarrow2x^2+4x-2=0\)
\(\Leftrightarrow x^2+2x-1=0\)
\(\Leftrightarrow\left(x+1\right)^2=2\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\sqrt{2}-1\\x=\sqrt{2}-1\end{matrix}\right.\)
c: Ta có: \(x=\left(4+\sqrt{15}\right)\cdot\left(\sqrt{10}-\sqrt{6}\right)\cdot\sqrt{4-\sqrt{15}}\)
\(=\left(4+\sqrt{15}\right)\cdot\left(\sqrt{5}-\sqrt{3}\right)^2\)
\(=\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)\)
\(=2\)
Thay x=2 vào E, ta được:
\(E=\dfrac{4\cdot2^2}{1}=16\)
1) a) \(\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}=\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{3}-1\right)^2}\)
\(=\left|\sqrt{3}+1\right|-\left|\sqrt{3}-1\right|=\sqrt{3}+1-\left(\sqrt{3}-1\right)=\sqrt{3}+1-\sqrt{3}+1=2\)
b) \(\left(\dfrac{1}{\sqrt{5}-\sqrt{2}}-\dfrac{1}{\sqrt{5}+\sqrt{2}}+1\right).\dfrac{1}{\left(\sqrt{2}+1\right)^2}\)
\(=\left(\dfrac{\sqrt{5}+\sqrt{2}-\left(\sqrt{5}-\sqrt{2}\right)}{\left(\sqrt{5}-\sqrt{2}\right)\left(\sqrt{5}+\sqrt{2}\right)}+1\right).\dfrac{1}{\left(\sqrt{2}+1\right)^2}\)
\(=\left(\dfrac{\sqrt{5}+\sqrt{2}-\sqrt{5}+\sqrt{2}}{\left(\sqrt{5}\right)^2-\left(\sqrt{2}\right)^2}+1\right).\dfrac{1}{\left(\sqrt{2}+1\right)^2}\)
\(=\left(\dfrac{2\sqrt{2}}{5-2}+1\right).\dfrac{1}{\left(\sqrt{2}+1\right)^2}=\left(\dfrac{2\sqrt{2}}{3}+1\right).\dfrac{1}{\left(\sqrt{2}+1\right)^2}\)
\(=\dfrac{3+2\sqrt{2}}{3}.\dfrac{1}{\left(\sqrt{2}+1\right)}=\dfrac{\left(\sqrt{2}+1\right)^2}{3}.\dfrac{1}{\left(\sqrt{2}+1\right)}=\dfrac{1}{3}\)
a: \(E=\dfrac{x+2\sqrt{x}+1-x+2\sqrt{x}-1+4\sqrt{x}\left(x-1\right)}{x-1}:\dfrac{x-1}{\sqrt{x}}\)
\(=\dfrac{4\sqrt{x}+4x\sqrt{x}-4\sqrt{x}}{x-1}\cdot\dfrac{\sqrt{x}}{x-1}\)
\(=\dfrac{4x^2}{\left(x-1\right)^2}\)
b: \(x=\left(4+\sqrt{15}\right)\cdot\left(\sqrt{5}-\sqrt{3}\right)\cdot\sqrt{8-2\sqrt{15}}\)
\(=\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)\)
\(=32-8\sqrt{15}+8\sqrt{15}-30=2\)
Thay x=2 vào E, ta được:
\(E=\dfrac{4\cdot2^2}{\left(2-1\right)^2}=16\)