K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2020

a) ĐKXĐ: \(x\ne3;x\ne\pm2\)

\(C=\frac{2a-a^2}{a+3}\cdot\left(\frac{a-2}{a+2}-\frac{a+2}{a-2}+\frac{4a^2}{4-a^2}\right)\)

\(C=\frac{-a^2+2a}{a+3}\cdot\left(-\frac{4a}{a-2}\right)\)

\(C=-\frac{2a-a^2}{a+3}\cdot\frac{4a}{a-2}\)

\(C=-\frac{\left(2a-a^2\right)\cdot4a}{\left(a+3\right)\left(a-2\right)}\)

\(C=\frac{4a^2}{a+3}\)

b) \(C=\frac{4.4^2}{4+3}=\frac{46}{7}\)

c) \(\frac{4a^2}{a+3}=1\)

<=> 4a2 = a + 3

<=> 4a2 - a - 3 = 0

<=> 4a- 3a - 4a - 3 = 0

<=> a(4a + 3) - (4a + 3) = 0

<=> (4a + 3)(a - 1) = 0

<=> 4a + 3 = 0 hoặc a - 1 = 0

<=> a = -3/4 hoặc a = 1

7 tháng 3 2020

sửa đáp án câu b thành \(\frac{64}{7}\) nhé

14 tháng 12 2018

a,ĐK:  \(\hept{\begin{cases}x\ne0\\x\ne\pm3\end{cases}}\)

b, \(A=\left(\frac{9}{x\left(x-3\right)\left(x+3\right)}+\frac{1}{x+3}\right):\left(\frac{x-3}{x\left(x+3\right)}-\frac{x}{3\left(x+3\right)}\right)\)

\(=\frac{9+x\left(x-3\right)}{x\left(x-3\right)\left(x+3\right)}:\frac{3\left(x-3\right)-x^2}{3x\left(x+3\right)}\)

\(=\frac{x^2-3x+9}{x\left(x-3\right)\left(x+3\right)}.\frac{3x\left(x+3\right)}{-x^2+3x-9}=\frac{-3}{x-3}\)

c, Với x = 4 thỏa mãn ĐKXĐ thì

\(A=\frac{-3}{4-3}=-3\)

d, \(A\in Z\Rightarrow-3⋮\left(x-3\right)\)

\(\Rightarrow x-3\inƯ\left(-3\right)=\left\{-3;-1;1;3\right\}\Rightarrow x\in\left\{0;2;4;6\right\}\)

Mà \(x\ne0\Rightarrow x\in\left\{2;4;6\right\}\)

11 tháng 12 2018

để A xác định

\(\Rightarrow\hept{\begin{cases}x+2\ne0\\x-2\ne0\\x^2\ne4\end{cases}}\Rightarrow x\ne\pm2\)

\(A=\frac{4}{x+2}+\frac{3}{x-2}-\frac{5x-6}{x^2-4}\)

\(A=\frac{4.x-8}{\left(x+2\right).\left(x-2\right)}+\frac{3.x+6}{\left(x-2\right).\left(x+2\right)}-\frac{5x-6}{\left(x-2\right).\left(x+2\right)}\)

\(A=\frac{4x-8+3x+6-5x+6}{\left(x+2\right).\left(x-2\right)}=\frac{2.\left(x+2\right)}{\left(x+2\right).\left(x-2\right)}=\frac{2}{x-2}\)

11 tháng 12 2018

\(\frac{4}{x+2}+\frac{3}{x-2}-\frac{5x-6}{x^2-4}=\frac{4}{x+2}+\frac{3}{x-2}-\frac{5x-6}{\left(x+2\right)\left(x-2\right)}\)

\(=\frac{4x-8}{\left(x+2\right)\left(x-2\right)}+\frac{3x+4}{\left(x-2\right)\left(x+2\right)}-\frac{5x-6}{\left(x-2\right)\left(x+2\right)}=\frac{4x-8+3x+4-5x+6}{\left(x+2\right)\left(x-2\right)}\)

\(=\frac{2x+2}{\left(x+2\right)\left(x-2\right)}=\frac{2x+2}{x^2-4}\)

C, \(x=4\Rightarrow A=\frac{2x+2}{x^2-4}=\frac{-6}{12}=\frac{-1}{2}\)

d, \(A\inℤ\Leftrightarrow2x+2⋮x^2-4\Leftrightarrow2x^2+2x-2x^2+8⋮x^2-4\Leftrightarrow2x+8⋮x^2-4\)

\(\Leftrightarrow2x^2+8x⋮x^2-4\Leftrightarrow16⋮x^2-4\)

\(x^2-4\inℕ\)

\(\Rightarrow x^2\in\left\{0;4;12\right\}\)

Thử lại thì 12 ko là số chính phương vậy x=0 hoặc x=2 thỏa mãn

mk học lớp 6 mong mn thông cảm nếu có sai sót

28 tháng 6 2023

Xem lại biểu thức P.

28 tháng 6 2023

loading...

Mình phải đi ăn nên chiều mình làm nốt câu d nhé

21 tháng 3 2020

a) \(ĐKXĐ:\hept{\begin{cases}a\ne-3\\a\ne\pm2\end{cases}}\)

    \(M=\frac{2a-a^2}{a+3}\left(\frac{a-2}{a+2}-\frac{a+2}{a-2}+\frac{4a^2}{4-a^2}\right)\)

\(\Leftrightarrow M=\frac{a\left(2-a\right)}{a+3}\cdot\frac{\left(a-2\right)^2-\left(a+2\right)^2-4a^2}{\left(a-2\right)\left(a+2\right)}\)

\(\Leftrightarrow M=\frac{a\left(2-a\right)}{a+3}\cdot\frac{a^2-4a+4-a^2-4a-4-4a^2}{\left(a-2\right)\left(a+2\right)}\)

\(\Leftrightarrow M=\frac{a\left(2-a\right)}{a+3}\cdot\frac{-4a^2-8a}{\left(a-2\right)\left(a+2\right)}\)

\(\Leftrightarrow M=\frac{a\left(2-a\right)}{a+3}\cdot\frac{-4a\left(a+2\right)}{\left(a-2\right)\left(a+2\right)}\)

\(\Leftrightarrow M=\frac{a\left(2-a\right)}{a+3}\cdot\frac{-4a}{a-2}\)

\(\Leftrightarrow M=\frac{4a^2\left(a-2\right)}{\left(a+3\right)\left(a-2\right)}\)

\(\Leftrightarrow M=\frac{4a^2}{a+3}\)

b) Để M = 1

\(\Leftrightarrow\frac{4a^2}{a+3}=1\)

\(\Leftrightarrow4a^2=a+3\)

\(\Leftrightarrow4a^2-a-3=0\)

\(\Leftrightarrow\left(4a+3\right)\left(a-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}4a+3=0\\a-1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}a=-\frac{3}{4}\left(tm\right)\\a=1\left(tm\right)\end{cases}}\)

Vậy để \(M=1\Leftrightarrow a\in\left\{-\frac{3}{4};1\right\}\)

c) Để M > 0

\(\Leftrightarrow\frac{4a^2}{a+3}>0\)

\(\Leftrightarrow a+3>0\)(Vì 4a2 > 0, loại trường hợp = 0)

\(\Leftrightarrow a>-3\)

Vậy để \(M>0\Leftrightarrow a>-3\)

Để M < 0

\(\Leftrightarrow\frac{4a^2}{a+3}< 0\)

\(\Leftrightarrow a+3< 0\)(Vì 4a2 > 0, loại trường hợp = 0)

\(\Leftrightarrow a< -3\)

Vậy để \(M< 0\Leftrightarrow a< -3\)

14 tháng 12 2018

\(B=\frac{5}{x+3}+\frac{3}{x-3}-\frac{5x+3}{x^2-9}\)

\(B=\frac{5}{x+3}+\frac{3}{x-3}-\frac{5x+3}{\left(x-3\right)\left(x+3\right)}\)

B xác định \(\Leftrightarrow\hept{\begin{cases}x-3\ne0\\x+3\ne0\end{cases}\Leftrightarrow}x\ne\pm3\)

Vậy B xác định \(\Leftrightarrow x\ne\pm3\)

14 tháng 12 2018

\(B=\frac{5}{x+3}+\frac{3}{x-3}-\frac{5x+3}{x^2-9}\)

\(B=\frac{5}{x+3}+\frac{3}{x-3}-\frac{5x+3}{\left(x-3\right)\left(x+3\right)}\)

\(B=\frac{5\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}+\frac{3\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{5x+3}{\left(x-3\right)\left(x+3\right)}\)

\(B=\frac{5x-15+3x+9-5x-3}{\left(x+3\right)\left(x-3\right)}\)

\(B=\frac{3x-9}{\left(x+3\right)\left(x-3\right)}\)

\(B=\frac{3\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}\)

\(B=\frac{3}{x+3}\)