Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Phân thức B xác định \(\Leftrightarrow\hept{\begin{cases}2x-2\ne0\\x^2-1\ne0\\2x+2\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne1\\x\ne\left\{\pm1\right\}\\x\ne-1\end{cases}\Leftrightarrow}x\ne\left\{\pm1\right\}}\)
b) \(B=\left(\frac{x+1}{2x-2}+\frac{3}{x^2-1}-\frac{x+3}{2x+2}\right)\cdot\frac{4x^2-4}{5}\)
\(B=\left[\frac{\left(x+1\right)^2}{2\left(x-1\right)\left(x+1\right)}+\frac{3\cdot2}{2\left(x-1\right)\left(x+1\right)}-\frac{\left(x+3\right)\left(x-1\right)}{2\left(x-1\right)\left(x+1\right)}\right]\cdot\frac{\left(2x\right)^2-2^2}{5}\)
\(B=\frac{x^2+2x+1+6-x^2-2x+3}{2\left(x-1\right)\left(x+1\right)}\cdot\frac{\left(2x-2\right)\left(2x+2\right)}{5}\)
\(B=\frac{10\cdot2\left(x-1\right)\cdot2\left(x+1\right)}{2\left(x-1\right)\left(x+1\right)\cdot5}\)
\(B=\frac{40\left(x-1\right)\left(x+1\right)}{10\left(x-1\right)\left(x+1\right)}\)
\(B=4\)
Vậy với mọi giá trị của x thì B luôn bằng 4
Vậy giá trị của B không phụ thuộc vào biến ( đpcm )
\(Giải:\)
\(ĐKXĐ:x\ne\pm1\)
\(B=\left[\frac{x+1}{2x-2}+\frac{3}{x^2-1}-\frac{x+3}{2x+2}\right]=\left[\frac{x+1}{2x-2}+\frac{12}{4x^2-4}-\frac{x+3}{2x+2}\right]\)
\(=\left[\frac{x+1}{2x-2}+\frac{12}{\left(2x+2\right)\left(2x-2\right)}-\frac{x+3}{2x+2}\right]\)
\(=\left[\frac{\left(x+1\right)\left(2x+2\right)}{\left(2x+2\right)\left(2x-2\right)}+\frac{12}{\left(2x+2\right)\left(2x-2\right)}-\frac{\left(x+3\right)\left(2x-2\right)}{\left(2x-2\right)\left(2x+2\right)}\right]\)
\(=\frac{2x^2+4x+14-2x^2+2x-6x+6}{\left(2x-2\right)\left(2x+2\right)}\)
\(=\frac{6}{\left(2x-2\right)\left(2x+2\right)}\)
a) 2x−2=2(x−1)≠02x−2=2(x−1)≠0 khi x−1≠0x−1≠0 hay x≠1x≠1
x2−1=(x−1)(x+1)≠0x2−1=(x−1)(x+1)≠0 khi x−1≠0x−1≠0 và x+1≠0x+1≠0
hay x≠1x≠1 và x≠−1x≠−1
2x+2=2(x+1)≠02x+2=2(x+1)≠0 khi x+1≠0x+1≠0 hay x≠−1x≠−1
Do đó điều kiện để giá trị của biểu thức được xác định là x≠−1,x≠1x≠−1,x≠1
b) Để chứng minh biểu thức không phục thuộc vào biến x ta phải chứng tỏ rằng có thể biến đổi biểu thức này thành một hằng số.
Thật vậy:(x+12x−2+3x2−1−x+32x+2).4x
a, \(2x-2\ne0\) khi \(2x\ne2\Leftrightarrow x\ne1\)
\(x^2-1=\left(x+1\right)\left(x-1\right)\ne0\) khi \(x+1\ne0\) và \(x-1\Leftrightarrow x\ne-1\) và \(x\ne1\)
\(2x+2=2\left(x+1\right)\ne0\) khi \(x\ne-1\)
điều kiên của x để giá trị của biểu thức được xác định là : \(x\ne-1\) và \(x\ne1\)
b, \(\left(\dfrac{x+1}{2x-2}\dfrac{3}{x^2-1}-\dfrac{x+3}{2x+2}\right).\dfrac{4x^2-4}{5}\)
= \(\left[\dfrac{x+1}{2\left(x-1\right)}+\dfrac{3}{\left(x+1\right)\left(x-1\right)}+\dfrac{-\left(x+3\right)}{2\left(x+1\right)}\right].\dfrac{4\left(x^2-1\right)}{5}\)
=\(\dfrac{\left(x+1\right)\left(x+1\right)+3.2-\left(x+3\right)\left(x-1\right)}{2\left(x+1\right)\left(x-1\right)}.\dfrac{4\left(x+1\right)\left(x-1\right)}{5}\)
= \(\dfrac{x^2+2x+1+6-x^2+x-3x+3}{2\left(x+1\right)\left(x-1\right)}.\dfrac{4\left(x+1\right)\left(x-1\right)}{5}\)
= \(\dfrac{10}{2\left(x+1\right)\left(x-1\right)}.\dfrac{4\left(x+1\right)\left(x-1\right)}{5}\)
= \(\dfrac{40\left(x+1\right)\left(x-1\right)}{10\left(x+1\right)\left(x-1\right)}\)
Vậy giá trị biểu thức được xác định thì nó không phụ thuộc vào giá trị của biến X
a) ĐKXĐ: \(\hept{\begin{cases}2x-2\ne0\\x^2-1\ne0\\2x+2\ne0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x\ne1\\x\ne-1\end{cases}}\)
b) bạn rút gọn, biểu thức sẽ bằng 4
=> giá tri của biểu thức sẽ không phụ thuộc vào biến x
tôi vướng ở câu b giải cứ bị lẫn giải ra vẫn có biến x giải họ tôi cái
Câu a .
Để giá trị của biểu thức B xác định thì :
\(\left\{{}\begin{matrix}2x-2\ne0\\x^2-1\ne0\\2x+2\ne0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ne1\\x\ne-1\end{matrix}\right.\)
Câu b : Ta có :
\(B=\dfrac{4x^2-4}{5}.\left(\dfrac{x+1}{2x-2}+\dfrac{3}{x^2-1}-\dfrac{x+3}{2x+2}\right)\)
\(B=\dfrac{4x^2-4}{5}.\left(\dfrac{\left(x+1\right)\left(x+1\right)+3.2-\left(x+3\right)\left(x-1\right)}{2\left(x-1\right)\left(x+1\right)}\right)\)
\(B=\dfrac{4x^2-4}{5}.\dfrac{x^2+2x+1+6-x^2-2x+3}{2\left(x-1\right)\left(x+1\right)}\)
\(B=\left(\dfrac{4x^2-4}{5}\right).\left(\dfrac{10}{2\left(x-1\right)\left(x+1\right)}\right)\)
\(B=\dfrac{40x^2-40}{10x^2-10}=\dfrac{4\left(10x^2-10\right)}{10x^2-10}=4\)
Vậy biểu thức B không phụ thuộc vào giá trị của x
a)Phân Tích:
B=\(\left(\dfrac{x+1}{2\left(x-1\right)}+\dfrac{3}{\left(x-1\right)\left(x+1\right)}-\dfrac{x+3}{2\left(x+1\right)}\right)\left(\dfrac{4\left(x^2-1\right)}{5}\right)\)
ĐKBTXĐ:\(\left\{{}\begin{matrix}x-1\ne0\\x+1\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne1\\x\ne-1\end{matrix}\right.\)
b)
B=\(\left(\dfrac{\left(x+1\right)^2}{2\left(x+1\right)\left(x-1\right)}+\dfrac{6}{2\left(x+1\right)\left(x-1\right)}-\dfrac{\left(x+3\right)\left(x-1\right)}{2\left(x+1\right)\left(x-1\right)}\right)\left(\dfrac{4\left(x+1\right)\left(x-1\right)}{5}\right)\)B=\(\dfrac{x^2+2x+1+6-\left(x^2-x+3x-3\right)}{2\left(x+1\right)\left(x-1\right)}\).\(\dfrac{4\left(x+1\right)\left(x-1\right)}{5}\)
B=\(\dfrac{10.4\left(x+1\right)\left(x-1\right)}{2.5\left(x+1\right)\left(x-1\right)}\)
B=4
Vậy giá trị của biểu thức ko phụ thuộc vào biến x
a) ĐK : \(x\ne1\); \(x\ne-1\)
b) Ta có biểu thức:
\(B=\left(\frac{x+1}{2x-2}+\frac{3}{x^2-1}-\frac{x+3}{2x+2}\right).\left(\frac{4x^2-4}{5}\right)\)
\(=\left(\frac{x+1}{2.\left(x-1\right)}+\frac{3}{\left(x+1\right)\left(x-1\right)}-\frac{x+3}{2.\left(x+1\right)}\right).\left(\frac{4.\left(x^2-1\right)}{5}\right)\)
\(=\frac{\left(x+1\right)^2+3.2-\left(x+3\right)\left(x-1\right)}{2.\left(x-1\right)\left(x+1\right)}.\frac{4.\left(x+1\right)\left(x-1\right)}{5}\)
\(=\frac{x^2+2x+2+6-x^2-2x+3}{2.\left(x-1\right)\left(x+1\right)}.\frac{4.\left(x+1\right)\left(x-1\right)}{5}=\frac{40.\left(x+1\right)\left(x-1\right)}{10.\left(x+1\right)\left(x-1\right)}=4\)
Vậy giá trị của biểu thức B không phụ thuộc vào biến x khi \(x\ne1;x\ne-1\)
a) \(\dfrac{x}{x-3}-\dfrac{x^2+3x}{2x+3}\left(\dfrac{x+3}{x^2-3x}-\dfrac{x}{x^2-9}\right)\)
ĐKXĐ:\(\left\{{}\begin{matrix}x-3\ne0\\2x +3\ne0\\x^2-3x\ne0\\x^2-9\ne0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ne3\\x\ne-\dfrac{3}{2}\\x\ne0\\x\ne\pm3\end{matrix}\right.\)
\(=\dfrac{x}{x-3}-\dfrac{x\left(x+3\right)}{2x+3}\left(\dfrac{x+3}{x\left(x-3\right)}-\dfrac{x}{\left(x-3\right)\left(x+3\right)}\right)\)
\(=\dfrac{x}{x-3}-\dfrac{x\left(x+3\right)}{2x+3}.\dfrac{\left(x+3\right)^2-x^2}{x\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{x}{x-3}-\dfrac{x\left(x+3\right)}{2x+3}.\dfrac{\left(x+3-x\right)\left(x+3+x\right)}{x\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{x}{x-3}-\dfrac{x\left(x+3\right).3\left(2x+3\right)}{\left(2x+3\right)x\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{x}{x-3}-\dfrac{3}{x-3}\)
\(=\dfrac{x-3}{x-3}\)
=1
\(\Rightarrow\) ĐPCM
a.ĐK: \(\left\{{}\begin{matrix}2x-2\ne0\\x^2-1\ne0\\2x+2\ne0\end{matrix}\right.\Leftrightarrow x\ne\pm1\)
b.\(B=\left[\dfrac{\left(x+1\right)\left(x+1\right)+6-\left(x+3\right)\left(x-1\right)}{2\left(x+1\right)\left(x-1\right)}\right].\dfrac{4\left(x+1\right)\left(x-1\right)}{5}\)
\(B=\dfrac{4.2}{5}=\dfrac{8}{5}\)
Vậy B không phụ thuộc vào biến.
a ) ĐKXĐ :
\(\left\{{}\begin{matrix}2x-2\ne0\\x^2-1\ne0\\2x+2\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x\ne2\\x^2\ne1\\2x\ne-2\end{matrix}\right.\) \(\Leftrightarrow x\ne\pm1\)
b ) \(B=\left[\dfrac{x+1}{2x-2}+\dfrac{3}{x^2-1}-\dfrac{x+3}{2x+2}\right].\dfrac{4x^2-4}{5}\)
\(=\left[\dfrac{\left(x+1\right)^2}{2\left(x-1\right)\left(x+1\right)}+\dfrac{6}{2\left(x-1\right)\left(x+1\right)}-\dfrac{\left(x+3\right)\left(x-1\right)}{2\left(x-1\right)\left(x+1\right)}\right].\dfrac{4\left(x^2-1\right)}{5}\)
\(=\dfrac{\left(x+1\right)^2+6-\left(x+3\right)\left(x-1\right)}{2\left(x-1\right)\left(x+1\right)}.\dfrac{4\left(x-1\right)\left(x+1\right)}{5}\)
\(=\dfrac{2\left[\left(x+1\right)^2+6-\left(x+3\right)\left(x-1\right)\right]}{5}\)
\(=\dfrac{2\left(x^2+2x+1+6-x^2-2x+3\right)}{5}\)
\(=\dfrac{2.10}{5}=4\)
\(\Rightarrow\) Đpcm
a, ĐKXĐ \(\left\{{}\begin{matrix}x\ne1\\x\ne-1\end{matrix}\right.\)
b,Ta có: \(B=\left(\dfrac{x+1}{2x-2}+\dfrac{3}{x^2-1}-\dfrac{x+3}{2x+2}\right).\dfrac{4x^2-4}{5}\)
\(=\left[\dfrac{\left(x+1\right)^2}{2\left(x-1\right)\left(x+1\right)}+\dfrac{6}{2\left(x-1\right)\left(x+1\right)}-\dfrac{\left(x+3\right)\left(x-1\right)}{2\left(x+1\right)\left(x-1\right)}\right].\dfrac{4\left(x-1\right)\left(x+1\right)}{5}\)
\(=\dfrac{x^2+2x+1+6-\left(x^2+2x-3\right)}{2\left(x-1\right)\left(x+1\right)}.\dfrac{4\left(x-1\right)\left(x+1\right)}{5}\)
\(=\dfrac{2.10}{5}=4\)
Vậy giá trị của B ko phụ thuộc vào giá trị của biến x
2x-1 hay 2x-2 vậy ?