Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: ĐKXĐ: 2x+3>=0 và x-3>0
=>x>3
b: ĐKXĐ:(2x+3)/(x-3)>=0
=>x>3 hoặc x<-3/2
c: ĐKXĐ: x+2<0
hay x<-2
d: ĐKXĐ: -x>=0 và x+3<>0
=>x<=0 và x<>-3
\(\text{a) }\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2\\ =\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\dfrac{\left(\sqrt{x}-\sqrt{y}\right)^2\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}\\ =\dfrac{x\sqrt{x}+y\sqrt{y}-\left(\sqrt{x}-\sqrt{y}\right)\left(x-y\right)}{\sqrt{x}+\sqrt{y}}\\ =\dfrac{x\sqrt{x}+y\sqrt{y}-x\sqrt{x}+x\sqrt{y}+y\sqrt{x}-y\sqrt{y}}{\sqrt{x}+\sqrt{y}}\\ =\dfrac{x\sqrt{y}+y\sqrt{x}}{\sqrt{x}+\sqrt{y}}\\ =\dfrac{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}\\ =\sqrt{xy}\)
\(\text{b) }\sqrt{\dfrac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}=\sqrt{\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)^2}}=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)
\(\text{c) }\dfrac{x-1}{\sqrt{y}-1}\cdot\sqrt{\dfrac{\left(y-2\sqrt{y}+1\right)^2}{\left(x-1\right)^4}}\\ =\dfrac{x-1}{\sqrt{y}-1}\cdot\sqrt{\dfrac{\left(\sqrt{y}-1\right)^4}{\left(x-1\right)^4}}\\ =\dfrac{x-1}{\sqrt{y}-1}\cdot\dfrac{\left(\sqrt{y}-1\right)^2}{\left(x-1\right)^2}\\ =\dfrac{\sqrt{y}-1}{x-1}\)
a)\(\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2\)
\(=\dfrac{\sqrt{x^3}+\sqrt{y^3}}{\sqrt{x}+\sqrt{y}}-\left(x-2\sqrt{x}\sqrt{y}+y\right)\)
\(=\dfrac{\left(\sqrt{x}+\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)}{\sqrt{x}+\sqrt{y}}-x+2\sqrt{xy}+y\)
\(=x+\sqrt{xy}+y-x+2\sqrt{xy}+y\)
\(=3\sqrt{xy}+2y\)
a: \(=x-\sqrt{xy}+y-x+2\sqrt{xy}-y=\sqrt{xy}\)
b: \(=\dfrac{1+\sqrt{a}}{a-\sqrt{a}}\cdot\dfrac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}=\dfrac{\sqrt{a}-1}{\sqrt{a}}\)
\(=\dfrac{8-x}{2+\sqrt[3]{x}}:\dfrac{4+2\sqrt[3]{x}+\sqrt[3]{x^2}}{2+\sqrt[3]{x}}+\dfrac{\sqrt[3]{x^2}-2\sqrt[3]{x}+2\sqrt[3]{x}}{\sqrt[3]{x}-2}\cdot\dfrac{\sqrt[3]{x^2}-1}{\sqrt[3]{x}\left(\sqrt[3]{x}+1\right)}\)
\(=2-\sqrt[3]{x}+\dfrac{\sqrt[3]{x}-1}{\sqrt[3]{x}-2}\)
\(=\dfrac{4-4\sqrt[3]{x}+\sqrt[3]{x^2}-\sqrt[3]{x}+1}{2-\sqrt[3]{x}}\)
\(=\dfrac{\sqrt[3]{x^2}-5\sqrt[3]{x}+5}{2-\sqrt[3]{x}}\)
Nếu có thêm điều kiện \(y>1\) thì kết quả là \(\dfrac{1}{x-1}\)
\(B=\left(\dfrac{2\sqrt{x}+x}{x\sqrt{x}-1}-\dfrac{1}{\sqrt{x}-1}\right)\cdot\left(1-\dfrac{\sqrt{x}+2}{x+\sqrt{x}+1}\right)\)
\(=\left(\dfrac{2\sqrt{x}+x}{\left(\sqrt{x}-1\right)\cdot\left(x+\sqrt{x}+1\right)}-\dfrac{1}{\sqrt{x}-1}\right)\cdot\dfrac{x+\sqrt{x}+1-\left(\sqrt{x}+2\right)}{x+\sqrt{x}+1}\)
\(=\dfrac{2\sqrt{x}+x-\left(x+\sqrt{x}+1\right)}{\left(x+\sqrt{x}+1\right)\cdot\left(\sqrt{x}-1\right)}\cdot\dfrac{x+\sqrt{x}+1-\sqrt{x}-2}{x+\sqrt{x}+1}\)
\(=\dfrac{2\sqrt{x}+x-x-\sqrt{x}-1}{\left(x+\sqrt{x}+1\right)\cdot\left(\sqrt{x}-1\right)}\cdot\dfrac{x-1}{x+\sqrt{x}+1}\)
\(=\dfrac{\sqrt{x}-1}{\left(x+\sqrt{x}+1\right)\cdot\left(\sqrt{x}-1\right)}\cdot\dfrac{x-1}{x+\sqrt{x}+1}\)
\(=\dfrac{1}{x+\sqrt{x}+1}\cdot\dfrac{x-1}{x+\sqrt{x}+1}\)
\(=\dfrac{x-1}{\left(x+\sqrt{x}+1\right)^2}\)