Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(M=2022-\left|x-9\right|\le2022\)
\(maxM=2022\Leftrightarrow x=9\)
b) \(N=\left|x-2021\right|+2022\ge2022\)
\(minN=2022\Leftrightarrow x=2021\)
\(M=\left|x-2021\right|+\left|2022-x\right|\ge\left|x-2021+2022-x\right|=1\\ M_{min}=1\Leftrightarrow\left(x-2021\right)\left(2022-x\right)\ge0\Leftrightarrow2021\le x\le2022\)
\(|x-2022|\ge0\) Với mọi x
\(\Rightarrow|x-2022|+5\ge5\)
Vậy Amin = 5
Dấu = xảy ra \(\Leftrightarrow x-20202=0\)
\(\Leftrightarrow x=2022\)
Vậy Amin = 5 \(\Leftrightarrow x=2022\)
Ta có:
\(B=\left(2x+\dfrac{5}{2}\right)^{2022}+2021\)
\(\ge0+2021=2021\)
Vậy \(B_{MIN}=2021\), đạt được khi và chỉ khi \(2x+\dfrac{5}{2}=0\Leftrightarrow2x=-\dfrac{5}{2}\Leftrightarrow x=-\dfrac{5}{4}\)
các bạn giúp mik với. Đề trên kia là \(\sqrt{x}+2021\) nhé! Mik đánh sai
Lời giải:
Áp dụng BĐT dạng $|a|+|b|\geq |a+b|$ ta có:
$|x-2021|+|x-2023|=|x-2021|+|2023-x|\geq |x-2021+2023-x|=2$
$|x-2022|\geq 0$ (tính chất trị tuyệt đối)
$\Rightarrow A=|x-2021|+|x-2022|+|x-2023|\geq 2+0=2$
Vậy $A_{\min}=2$. Giá trị này đạt tại $(x-2021)(2023-x)\geq 0$ và $x-2022=0$
Hay $x=2022$
A = (x+5)2022 + | y - 2021| + 2022
vì ( x+5)2022 \(\ge\) 0;
|y-2021| \(\ge\) 0
2022 = 2022
Cộng vế với vế ta được : A = (x+5)2022+|y-2021|+2022\(\ge\) 2022
Vậy A(min) = 2022 dấu bằng xảy ra khi : \(\left\{{}\begin{matrix}x+5=0\\y-2021=0\end{matrix}\right.\)=>\(\left\{{}\begin{matrix}x=-5\\y=2021\end{matrix}\right.\)