K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2018

1.a)\(\frac{x^3}{x^2-4}-\frac{x}{x-2}-\frac{2}{x+2}\)

\(=\frac{x^3}{\left(x+2\right)\left(x-2\right)}-\frac{x}{x-2}-\frac{2}{x+2}\)

Để biểu thức được xác định thì:\(\left(x+2\right)\left(x-2\right)\ne0\)\(\Rightarrow x\ne\pm2\)

                                                      \(\left(x+2\right)\ne0\Rightarrow x\ne-2\)

                                                      \(\left(x-2\right)\ne0\Rightarrow x\ne2\)

                         Vậy để biểu thức xác định thì : \(x\ne\pm2\)

b) để C=0 thì ....

21 tháng 12 2018

1, c , bn Nguyễn Hữu Triết chưa lm xong 

ta có : \(/x-5/=2\)

\(\Rightarrow\orbr{\begin{cases}x-5=2\\x-5=-2\end{cases}}\Rightarrow\orbr{\begin{cases}x=7\\x=3\end{cases}}\)

thay x = 7  vào biểu thứcC

\(\Rightarrow C=\frac{4.7^2\left(2-7\right)}{\left(7-3\right)\left(2+7\right)}=\frac{-988}{36}=\frac{-247}{9}\)KL :>...

thay x = 3 vào C 

\(\Rightarrow C=\frac{4.3^2\left(2-3\right)}{\left(3-3\right)\left(3+7\right)}\)

=> ko tìm đc giá trị C tại x = 3

a: \(A=\left(\dfrac{x}{x^2-4}+\dfrac{4}{x-2}+\dfrac{1}{x+2}\right):\dfrac{3x+3}{x^2+2x}\)

\(=\dfrac{x+4x+8+x-2}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x\left(x+2\right)}{3\left(x+1\right)}\)

\(=\dfrac{6\left(x+1\right)\cdot x\left(x+2\right)}{3\left(x+1\right)\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{2x}{x-2}\)

a: ĐKXĐ: x<>1; x<>-1

b: \(A=\dfrac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}=\dfrac{x-1}{x+1}\)

c: Để A nguyên thì x+1-2 chia hết cho x+1

=>\(x+1\in\left\{1;-1;2;-2\right\}\)

=>\(x\in\left\{0;-2;-3\right\}\)

a: ĐKXĐ: \(x\notin\left\{1;-1\right\}\)

b: \(A=\dfrac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}=\dfrac{x-1}{x+1}\)

c: Thay x=-2 vào A, ta được:

\(A=\dfrac{-2-1}{-2+1}=\dfrac{-3}{-1}=3\)

5 tháng 2 2022

Đề bài là \(B=\dfrac{\left(x-1\right)^2-4}{\left(2x+1\right)^2-\left(x+2\right)^2}\) hay là \(B=\dfrac{\left(x-1\right)^2-4}{\left(2x+1\right)^2}-\left(x+2\right)^2?\)

5 tháng 2 2022

\(\dfrac{\left(x-1\right)^2-4}{\left(2x+1\right)^2-\left(x+2\right)^2}\)

viết lại biểu thức 

10 tháng 3 2020

\(a,\)\(đkxđ\)\(\hept{\begin{cases}3+2x\ne0\\3-2x\ne0\end{cases}\Rightarrow\hept{\begin{cases}x\ne-\frac{3}{2}\\x\ne\frac{3}{2}\end{cases}}}\)

\(b,\)\(A=\left(\frac{1}{3+2x}+\frac{1}{3-2x}\right):\frac{1}{3+2x}\)

\(=\left(\frac{3-2x+3+2x}{\left(3-2x\right)\left(3+2x\right)}\right).\frac{3+2x}{1}\)

\(=\frac{6\left(3+2x\right)}{\left(3-2x\right)\left(3+2x\right)}=\frac{6}{3-2x}\)

\(c,\)Tại x = 3 \(\Rightarrow A=\frac{6}{3+2.3}=\frac{6}{9}=\frac{2}{3}\)

a: ĐKXĐ: \(x\notin\left\{1;-1\right\}\)

b: \(P=\dfrac{x}{2\left(x-1\right)}-\dfrac{x^2+1}{2\left(x-1\right)\left(x+1\right)}=\dfrac{x^2+x-x^2-1}{2\left(x-1\right)\left(x+1\right)}=\dfrac{1}{2x+2}\)

4 tháng 1 2022

a: ĐKXĐ: x∉{1;−1}x∉{1;−1}

b: P=x2(x−1)−x2+12(x−1)(x+1)=x2+x−x2−12(x−1)(x+1)=12x+2P=x2(x−1)−x2+12(x−1)(x+1)=x2+x−x2−12(x−1)(x+1)=12x+2

4 tháng 1 2022

Phân thức \(A=\dfrac{x^2+2x+1}{x^2+1}\) được xác định 

\(\Leftrightarrow x^2+1\ne0\\ \Leftrightarrow x^2\ne-1\)

Mà \(x^2\ne-1\forall x\)

\(\Rightarrow A=\dfrac{x^2+2x+1}{x^2+1}\) được xác định với mọi giá trị của biến x

4 tháng 1 2022

a) Phân thức A được xác định khi: 

x2+1≠0

=>x² khác - 1

=>x khác +-1

Vây ĐKXĐ của A là x≠1 và x≠−1

b)Ta có: A=x²+2x+1/x²+1

=(x+1)²/(x+1)

=(x+1)

Vậy A=x+1

⇔x≠1 và x khác -1

c) Ta có A=2

<=> x+1=2

⇔x=2-1

⇔x=1 KT

⇔x+1-1=0

=>x=2

Vậy khi x= thì A=2

( Bài này mình làm đại sai thì sr)