K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A=\left(\frac{x-1}{\sqrt{x}-1}+\frac{x+2\sqrt{x}+1}{\sqrt{x}+1}\right).\frac{1}{2\sqrt{x}}=\left[\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x-1}}+\frac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}+1}\right].\frac{1}{2\sqrt{x}}\)

\(A=2\left(\sqrt{x}+1\right).\frac{1}{2\sqrt{x}}=\frac{\sqrt{x}+1}{\sqrt{x}}>1=\sqrt{\frac{2019}{2019}}>\sqrt{\frac{2018}{2019}}\) ( đpcm ) 

... 

21 tháng 8 2019
https://i.imgur.com/7Gi05HK.jpg
21 tháng 8 2019
https://i.imgur.com/lpCsO1V.jpg
17 tháng 8 2015

1)))))))

\(\frac{2}{\sqrt{ab}}:\left(\frac{1}{\sqrt{a}}-\frac{1}{\sqrt{b}}\right)^2-\frac{a+b}{\left(\sqrt{a}-\sqrt{b}\right)^2}\)

\(=\frac{2}{\sqrt{ab}}:\frac{\left(\sqrt{b}-\sqrt{a}\right)^2}{\left(\sqrt{ab}\right)^2}-\frac{a+b}{\left(\sqrt{a}-\sqrt{b}\right)^2}\)

\(=\frac{2}{\sqrt{ab}}.\frac{\left(\sqrt{ab}\right)^2}{\left(\sqrt{a}-\sqrt{b}\right)^2}-\frac{a+b}{\left(\sqrt{a}-\sqrt{b}\right)^2}\)

\(=\frac{2\sqrt{ab}}{\left(\sqrt{a}-\sqrt{b}\right)^2}-\frac{a+b}{\left(\sqrt{a}-\sqrt{b}\right)^2}\)

\(=\frac{2\sqrt{ab}-a-b}{\left(\sqrt{a}-\sqrt{b}\right)^2}\)

\(=\frac{-\left(\sqrt{a}-\sqrt{b}\right)^2}{\left(\sqrt{a}-\sqrt{b}\right)^2}=-1\)

 

17 tháng 8 2015

\(\text{VT}=\left(1+\frac{x+\sqrt{x}}{\sqrt{x}+1}\right)\left(1-\frac{x-\sqrt{x}}{\sqrt{x}-1}\right)=\left(1+\frac{\sqrt{x}.\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\right)\left(1-\frac{\sqrt{x}.\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\right)\)

\(=\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)=1-x=\text{VP(điều phải chứng minh)}\)

16 tháng 10 2020

1: Rút gọn biểu thức

a) Ta có: \(5\sqrt{\frac{1}{5}}+\frac{1}{3}\sqrt{45}+\sqrt{\left(2-\sqrt{5}\right)^2}\)

\(=5\cdot\frac{1}{\sqrt{5}}+\frac{1}{3}\cdot3\sqrt{5}+\left|2-\sqrt{5}\right|\)

\(=\sqrt{5}+\sqrt{5}+\sqrt{5}-2\)(Vì \(2< \sqrt{5}\))

\(=3\sqrt{5}-2\)

b) Ta có: \(\frac{5+\sqrt{5}}{5-\sqrt{5}}+\frac{5-\sqrt{5}}{5+\sqrt{5}}\)

\(=\frac{\left(5+\sqrt{5}\right)^2}{\left(5-\sqrt{5}\right)\left(5+\sqrt{5}\right)}+\frac{\left(5-\sqrt{5}\right)^2}{\left(5+\sqrt{5}\right)\left(5-\sqrt{5}\right)}\)

\(=\frac{30+10\sqrt{5}+30-10\sqrt{5}}{25-5}\)

\(=\frac{60}{20}=3\)

2:

Sửa đề: \(A=\left(\frac{1}{\sqrt{x}-1}-\frac{1}{\sqrt{x}}\right):\left(\frac{\sqrt{x}+1}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}-1}\right)\)

a) Ta có: \(A=\left(\frac{1}{\sqrt{x}-1}-\frac{1}{\sqrt{x}}\right):\left(\frac{\sqrt{x}+1}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}-1}\right)\)

\(=\left(\frac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}-\frac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\right)\)

\(=\frac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\frac{x-1-\left(x-4\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)

\(=\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\frac{3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)

\(=\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}{3}\)

\(=\frac{\sqrt{x}-2}{3\sqrt{x}}\)

b) ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\x\notin\left\{1;4;\frac{14\pm6\sqrt{5}}{4}\right\}\end{matrix}\right.\)

Để \(A>\frac{1}{6}\) thì \(A-\frac{1}{6}>0\)

\(\Leftrightarrow\frac{\sqrt{x}-2}{3\sqrt{x}}-\frac{1}{6}>0\)

\(\Leftrightarrow\frac{2\sqrt{x}-4}{6\sqrt{x}}-\frac{\sqrt{x}}{6\sqrt{x}}>0\)

\(\Leftrightarrow\frac{\sqrt{x}-4}{6\sqrt{x}}>0\)

\(6\sqrt{x}>0\forall x\) thỏa mãn ĐKXĐ

nên \(\sqrt{x}-4>0\)

\(\Leftrightarrow\sqrt{x}>4\)

hay x>16

Kết hợp ĐKXĐ, ta được: x>16

Vậy: Để \(A>\frac{1}{6}\)thì x>16

8 tháng 11 2020

A=\(\frac{x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{1}{\sqrt{x}-2}+\frac{1}{\sqrt{x}+2}\)

=\(\frac{x+\sqrt{x}+2+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\frac{x+2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

=\(\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{\sqrt{x}}{\sqrt{x-2}}\)

Vậy A=\(\frac{\sqrt{x}}{\sqrt{x}-2}\)vs x\(\ge0;x\ne4\)

9 tháng 11 2020

C=\(\left(\frac{1+x}{\sqrt{x}\left(\sqrt{x}+1\right)}\right)\times\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}}=\frac{1+x}{\sqrt{x}}\)

Vậy C=\(\frac{1+x}{\sqrt{x}}\)vs x>0

5 tháng 4 2020

a) Đkxđ : \(\left\{{}\begin{matrix}a\ge0\\a\ne9\end{matrix}\right.\)

A = \(\left(\frac{\sqrt{a}+3}{\left(\sqrt{a}-3\right)\left(\sqrt{a}+3\right)}+\frac{\sqrt{a}-3}{\left(\sqrt{a}-3\right)\left(\sqrt{a}+3\right)}\right)\left(1-\frac{3}{\sqrt{a}}\right)\)

= \(\frac{2\sqrt{a}}{\left(\sqrt{a}-3\right)\left(\sqrt{a}+3\right)}.\frac{\sqrt{a}-3}{\sqrt{a}}\)

= \(\frac{2}{\sqrt{a}+3}\)

b) Để A > \(\frac{1}{2}\)

<=> \(\frac{2}{\sqrt{a}+3}>\frac{1}{2}\Leftrightarrow\frac{2}{\sqrt{a}+3}-\frac{1}{2}>0\)

<=> \(4-\sqrt{a}-3>0\Leftrightarrow1-\sqrt{a}>0\Leftrightarrow a< 1\)

Vậy để A >1/2 thì a <1