Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)ĐKXĐ :\(x\ge0;x\ne9\)
khai triển => \(P=\frac{x-4}{\sqrt{x}+1}\)
b) Ta có :\(x=\sqrt{14-6\sqrt{5}}=\sqrt{\left(3-\sqrt{5}\right)^2}=3-\sqrt{5}\)
Thay vào P ta có : \(P=\frac{3-\sqrt{5}-4}{\sqrt{3-\sqrt{5}}+1}=-\frac{7+\sqrt{5}}{\sqrt{3-\sqrt{5}}+1}\)
a: \(A=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{a}-\sqrt{b}}-\dfrac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}}\)
\(=\sqrt{a}-\sqrt{b}-\sqrt{a}-\sqrt{b}=-2\sqrt{b}\)
b: \(B=\dfrac{2\sqrt{x}-x-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{x+\sqrt{x}+1}{x-1}\)
\(=\dfrac{-2x+\sqrt{x}-1}{\sqrt{x}-1}\cdot\dfrac{1}{x-1}\)
c: \(C=\dfrac{x-9-x+3\sqrt{x}}{x-9}:\left(\dfrac{3-\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}-2}{\sqrt{x}+3}+\dfrac{x-9}{x+\sqrt{x}-6}\right)\)
\(=\dfrac{3\left(\sqrt{x}-3\right)}{x-9}:\dfrac{9-x+x-4\sqrt{x}+4+x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{3}{\sqrt{x}+3}\cdot\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}{x-4\sqrt{x}+4}\)
\(=\dfrac{3}{\sqrt{x}-2}\)
a, \(M=\frac{\sqrt{x}}{\sqrt{x}+6}+\frac{1}{\sqrt{x}-6}+\frac{17\sqrt{x}+30}{\left(\sqrt{x}+6\right)\left(\sqrt{x}-6\right)}\)
\(=\frac{x-6\sqrt{x}+\sqrt{x}+6+17\sqrt{x}+30}{\left(\sqrt{x}-6\right)\left(\sqrt{x}+6\right)}=\frac{12\sqrt{x}+x+36}{\left(\sqrt{x}-6\right)\left(\sqrt{x}+6\right)}=\frac{\sqrt{x}+6}{\sqrt{x}-6}\)
b, Ta có : \(L=N.M\Rightarrow L=\frac{\sqrt{x}+6}{\sqrt{x}-6}.\frac{24}{\sqrt{x}+6}=\frac{24}{\sqrt{x}+6}\)
Vì \(\sqrt{x}+6\ge6\)
\(\Rightarrow\frac{24}{\sqrt{x}+6}\le\frac{24}{6}=4\)
Dấu ''='' xảy ra khi \(\sqrt{x}+6=6\Leftrightarrow x=0\)
Vậy GTLN L là 4 khi x = 0
đk thiếu 2cănx-6 khác 0 nữa vì biểu thức chia khác 0
a) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x-36\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne36\end{matrix}\right.\)
b) Ta có: \(A=\left(\frac{\sqrt{x}}{x-36}-\frac{\sqrt{x}-6}{x+6\sqrt{x}}\right):\frac{2\sqrt{x}-6}{x+6\sqrt{x}}+\frac{\sqrt{x}}{6-\sqrt{x}}\)
\(=\left(\frac{x}{\sqrt{x}\left(\sqrt{x}+6\right)\left(\sqrt{x}-6\right)}-\frac{\left(\sqrt{x}-6\right)^2}{\sqrt{x}\left(\sqrt{x}+6\right)\left(\sqrt{x}-6\right)}\right)\cdot\frac{\sqrt{x}\left(\sqrt{x}+6\right)}{2\left(\sqrt{x}-3\right)}+\frac{\sqrt{x}}{6-\sqrt{x}}\)
\(=\frac{12\left(\sqrt{x}-3\right)}{\sqrt{x}\left(\sqrt{x}+6\right)\left(\sqrt{x}-6\right)}\cdot\frac{\sqrt{x}\left(\sqrt{x}+6\right)}{2\left(\sqrt{x}-3\right)}-\frac{\sqrt{x}}{\sqrt{x}-6}\)
\(=\frac{6}{\sqrt{x}-6}-\frac{\sqrt{x}}{\sqrt{x}-6}=\frac{6-\sqrt{x}}{-\left(6-\sqrt{x}\right)}=\frac{1}{-1}=-1\)
Vậy: Biểu thức \(A=\left(\frac{\sqrt{x}}{x-36}-\frac{\sqrt{x}-6}{x+6\sqrt{x}}\right):\frac{2\sqrt{x}-6}{x+6\sqrt{x}}+\frac{\sqrt{x}}{6-\sqrt{x}}\) không phụ thuộc vào x, với \(\left\{{}\begin{matrix}x\ge0\\x\ne36\end{matrix}\right.\)